Atnaujinkite slapukų nuostatas

El. knyga: Characterization of Finite Elasticities: Factorization Theory in Krull Monoids via Convex Geometry

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2316
  • Išleidimo metai: 26-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031148699
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2316
  • Išleidimo metai: 26-Oct-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031148699

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordorys Theorem by combining convex geometry, the combinatorics of infinite subsets of lattice points, and the arithmetic of transfer Krull monoids (the latter broadly generalizing the ubiquitous class of Krull domains in commutative algebra)This new theory is developed in a self-contained way with the main motivation of its later applications regarding factorization. While factorization into irreducibles, called atoms, generally fails to be unique, there are various measures of how badly this can fail. Among the most important is the elasticity, which measures the ratio between the maximum and minimum number of atoms in any factorization. Having finite elasticity is a key indicator that factorization, while not unique, is not completely wild. Via the developed material in convex geometry, we characterize when finite elasticity holds for any Krull domain with finitely generated class group $G$, with the results extending more generally to transfer Krull monoids.





This book is aimed at researchers in the field but is written to also be accessible for graduate students and general mathematicians.

Recenzijos

This work is a well-written and well-organized research monograph which is accessible for the non-specialist. It is a masterpiece of research in factorization theory and convex geometry. (Alfred Geroldinger, Mathematical Reviews, July, 2024)

- 1. Introduction. - 2. Preliminaries and General Notation. -
3. Asymptotically Filtered Sequences, Encasement and Boundedness. -
4. Elementary Atoms, Positive Bases and Reay Systems. - 5. Oriented Reay
Systems. - 6. Virtual Reay Systems. -
7. Finitary Sets. - 8. Factorization
Theory.