Atnaujinkite slapukų nuostatas

El. knyga: Chemical Reaction Technology [De Gruyter E-books]

  • Formatas: 440 pages, 50 Illustrations, color; 100 Tables, black and white; 150 Illustrations, black and white
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 15-May-2015
  • Leidėjas: De Gruyter
  • ISBN-13: 9783110336443
  • De Gruyter E-books
  • Kaina: 720,00 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 440 pages, 50 Illustrations, color; 100 Tables, black and white; 150 Illustrations, black and white
  • Serija: De Gruyter Textbook
  • Išleidimo metai: 15-May-2015
  • Leidėjas: De Gruyter
  • ISBN-13: 9783110336443
Murzin presents students, academics, researchers, and professionals working in a wide variety of contexts with an examination of the basics of chemical technology and the contemporary chemical and petrochemical industries. The author has organized the main body of his text in fifteen chapters devoted to chemical technology as a science, physico-chemical foundations of chemical processes, chemical processes and unit operations, and a wide variety of other related subjects. Dmitry Yu. Murzin is a faculty member of Abo Akademi University, Finland. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
Preface v
About the author vii
1 Chemical technology as science 1(48)
1.1 Basic principles
1(8)
1.1.1 Continuous or batch?
2(2)
1.1.2 Multilevel chemical processing
4(3)
1.1.3 Large or small chemical plants?
7(2)
1.2 Alternative production routes
9(2)
1.3 Evaluation of chemical processes
11(1)
1.4 Chemical process design
12(37)
1.4.1 Economic aspects
12(4)
1.4.2 Flow schemes
16(5)
1.4.3 Sustainable and safe chemical technology: process intensification
21(14)
1.4.4 Waste management
35(2)
1.4.5 Conceptual process design
37(8)
1.4.6 Product design
45(2)
1.4.7 Patents
47(2)
2 Physico-chemical foundations of chemical processes 49(18)
2.1 Stoichiometry
49(2)
2.2 Thermodynamics
51(4)
2.3 Catalysis
55(2)
2.4 Kinetics
57(3)
2.5 Mass transfer
60(7)
3 Chemical processes and unit operations 67(36)
3.1 Overview of unit operations
67(1)
3.2 Mechanical processes
68(3)
3.2.1 Filtration
68(2)
3.2.2 Cyclonic separation by gravitation
70(1)
3.3 Mass transfer processes
71(16)
3.3.1 Distillation
71(5)
3.3.2 Extraction
76(2)
3.3.3 Crystallization
78(3)
3.3.4 Adsorption
81(2)
3.3.5 Absorption
83(4)
3.4 Chemical reactors
87(16)
3.4.1 Homogeneous processes
87(1)
3.4.2 Non-catalytic heterogeneous processes
88(3)
3.4.3 Catalytic reactors
91(106)
3.4.3.1 Two-phase catalytic reactors
92(4)
3.4.3.2 Three-phase catalytic reactors
96(7)
4 Chemical process industry 103(34)
4.1 General overview
103(5)
4.2 Feedstock for chemical process industries
108(8)
4.3 Oil refining
116(6)
4.4 Natural gas processing
122(2)
4.5 Processing of coal
124(3)
4.6 Biomass processing
127(10)
5 Hydrogen and syngas generation 137(20)
5.1 Steam reforming of natural gas
137(11)
5.2 Gasification
148(5)
5.3 Water-gas shift reaction
153(4)
6 Cracking 157(34)
6.1 General
157(1)
6.2 Visbreaking
157(3)
6.3 Hydrocracking
160(10)
6.4 Fluid catalytic cracking
170(12)
6.5 Steam cracking
182(9)
7 Catalytic reforming of gasoline fractions: combining isomerization and dehydrogenation 191(6)
8 Halogenation 197(12)
8.1 Radical chlorination
197(6)
8.1.1 Liquid-phase chlorination
198(2)
8.1.2 Gas-phase chlorination
200(3)
8.2 Catalytic chlorination
203(1)
8.3 Hydrohalogenation
204(1)
8.4 Oxychlorination
205(3)
8.5 Fluorination
208(1)
9 Oxidation 209(44)
9.1 Oxidation of inorganic compounds
209(8)
9.1.1 Nitric acid
209(3)
9.1.2 Sulfuric acid
212(5)
9.2 Oxidation of organic compounds
217(36)
9.2.1 Heterogeneous catalytic oxidation
217(22)
9.2.1.1 Ethylene and propylene oxide
219(3)
9.2.1.2 Acrylic acid
222(2)
9.2.1.3 Formaldehyde
224(3)
9.2.1.4 Maleic anhydride
227(3)
9.2.1.5 Phthalic anhydride
230(7)
9.2.1.6 Acrylonitrile
237(2)
9.2.2 Liquid-phase oxidation
239(31)
9.2.2.1 Cyclohexane oxidation
241(1)
9.2.2.2 Cyclohexanol oxidation
242(2)
9.2.2.3 Xylene oxidation to terephthalic acid
244(2)
9.2.2.4 Wacker process: oxidation of ethylene to acetaldehyde
246(3)
9.2.2.5 Synthesis of phenol and acetone by isopropylbenzene oxidation
249(4)
10 Hydrogenation and dehydrogenation 253(28)
10.1 General
253(3)
10.2 Ammonia synthesis
256(8)
10.3 Gas-phase hydrogenation
264(1)
10.4 Liquid-phase hydrogenation
265(3)
10.5 Hydrotreating
268(2)
10.6 Dehydrogenation
270(11)
10.6.1 Dehydrogenation of light alkanes
270(6)
10.6.2 Dehydrogenation of ethylbenzene to styrene
276(5)
11 Reactions involving water: hydration, dehydration, etherification, hydrolysis, and esterification 281(12)
11.1 Hydration and dehydration
281(3)
11.2 Hydrolysis
284(5)
11.2.1 Acid-catalyzed hydrolysis of wood
285(2)
11.2.2 Enzymatic hydrolysis of acyl-L-amino acids
287(1)
11.2.3 Hydrolysis of fatty acids triglycerides
288(1)
11.3 Esterification
289(4)
12 Alkylation 293(24)
12.1 Alkylation of aromatics
293(7)
12.2 Alkylation of olefins
300(6)
12.3 O-Alkylation
306(5)
12.4 N-Alkylation
311(1)
12.5 Oxyalkylation
312(5)
13 Reactions with CO, CO2, and synthesis gas 317(54)
13.1 Carbonylation
317(4)
13.2 Carboxylation
321(15)
13.2.1 Kolbe-Schmidt synthesis
321(2)
13.2.2 Urea from CO2 and ammonia
323(9)
13.2.3 Synthesis of melamine
332(4)
13.3 Methanol from synthesis gas
336(8)
13.4 Hydrocarbons from synthesis gas: Fischer-Tropsch synthesis
344(13)
13.5 Reactions of olefins with synthesis gas: hydroformylation
357(14)
14 Key reactions in the synthesis of intermediates: nitration, sulfation, sulfonation, alkali fusion, ketone, and aldehyde condensation 371(30)
14.1 Nitration
371(4)
14.2 Sulfation and sulfonation
375(8)
14.2.1 Sulfation
375(3)
14.2.2 Sulfonation
378(5)
14.3 Alkali fusion
383(1)
14.4 Carbonyl condensation reactions
384(5)
14.4.1 Condensation with aromatic compounds
386(2)
14.4.2 Aldol condensation
388(1)
14.5 Caprolactam production
389(12)
14.5.1 Condensation of cyclohexanone to cyclohexanone oxime and subsequent Beckmann rearrangement
389(6)
14.5.2 Methods for caprolactam production
395(6)
15 Polymerization 401(18)
15.1 Polymers
401(1)
15.2 Step-growth polymerization
402(5)
15.3 Polymerization process options
407(3)
15.3.1 Homogeneous polymerization in substance
407(2)
15.3.2 Homogeneous polymerization in solution
409(1)
15.4 Heterogeneous polymerization
410(9)
15.4.1 Precipitation polymerization
410(5)
15.4.2 Suspension and emulsion polymerization
415(4)
Final words 419(2)
Index 421
Dmitry Yu. Murzin, Abo Akademi University, Turku, Finland.