Preface |
|
xiii | |
Preface to the Second Edition |
|
xvii | |
List of Symbols |
|
xix | |
About the Authors |
|
xxix | |
1 Introduction |
|
1 | (4) |
2 PvT Behavior of Pure Components |
|
5 | (58) |
|
|
5 | (5) |
|
|
10 | (4) |
|
|
14 | (2) |
|
|
16 | (9) |
|
2.4.1 Auxiliary Functions |
|
|
16 | (1) |
|
|
17 | (2) |
|
2.4.3 Fugacity and Fugacity Coefficient |
|
|
19 | (3) |
|
|
22 | (3) |
|
|
25 | (32) |
|
|
26 | (4) |
|
2.5.2 High-Precision Equations of State |
|
|
30 | (7) |
|
2.5.3 Cubic Equations of State |
|
|
37 | (5) |
|
2.5.4 Generalized Equations of State and Corresponding-States Principle |
|
|
42 | (7) |
|
2.5.5 Advanced Cubic Equations of State |
|
|
49 | (8) |
|
|
57 | (3) |
|
|
60 | (3) |
3 Correlation and Estimation of Pure Component Properties |
|
63 | (80) |
|
|
63 | (1) |
|
3.2 Characteristic Physical Property Constants |
|
|
63 | (14) |
|
|
64 | (5) |
|
|
69 | (1) |
|
3.2.3 Normal Boiling Point |
|
|
69 | (3) |
|
3.2.4 Melting Point and Enthalpy of Fusion |
|
|
72 | (2) |
|
3.2.5 Standard Enthalpy and Standard Gibbs Energy of Formation |
|
|
74 | (3) |
|
3.3 Temperature-Dependent Properties |
|
|
77 | (33) |
|
|
78 | (12) |
|
|
90 | (4) |
|
3.3.3 Enthalpy of Vaporization |
|
|
94 | (4) |
|
3.3.4 Ideal Gas Heat Capacity |
|
|
98 | (7) |
|
3.3.5 Liquid Heat Capacity |
|
|
105 | (4) |
|
|
109 | (1) |
|
3.4 Correlation and Estimation of Transport Properties |
|
|
110 | (25) |
|
|
110 | (5) |
|
|
115 | (5) |
|
3.4.3 Liquid Thermal Conductivity |
|
|
120 | (5) |
|
3.4.4 Vapor Thermal Conductivity |
|
|
125 | (3) |
|
|
128 | (3) |
|
3.4.6 Diffusion Coefficients |
|
|
131 | (4) |
|
|
135 | (3) |
|
|
138 | (5) |
4 Properties of Mixtures |
|
143 | (30) |
|
|
143 | (1) |
|
4.2 Property Changes of Mixing |
|
|
144 | (1) |
|
4.3 Partial Molar Properties |
|
|
145 | (3) |
|
|
148 | (2) |
|
4.5 Ideal Mixture of Ideal Gases |
|
|
150 | (2) |
|
4.6 Ideal Mixture of Real Fluids |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (2) |
|
4.8.1 Fugacity of an Ideal Mixture |
|
|
155 | (1) |
|
|
155 | (1) |
|
4.9 Activity and Activity Coefficient |
|
|
156 | (1) |
|
4.10 Application of Equations of State to Mixtures |
|
|
157 | (12) |
|
|
158 | (1) |
|
4.10.2 Cubic Equations of State |
|
|
159 | (10) |
|
|
169 | (1) |
|
|
170 | (3) |
5 Phase Equilibria in Fluid Systems |
|
173 | (150) |
|
|
173 | (12) |
|
5.2 Thermodynamic Fundamentals |
|
|
185 | (7) |
|
5.3 Application of Activity Coefficients |
|
|
192 | (3) |
|
5.4 Calculation of Vapor-Liquid Equilibria Using gE Models |
|
|
195 | (17) |
|
5.5 Fitting of gE Model Parameters |
|
|
212 | (17) |
|
5.5.1 Check of VLE Data for Thermodynamic Consistency |
|
|
218 | (9) |
|
5.5.2 Recommended gE Model Parameters |
|
|
227 | (2) |
|
5.6 Calculation of Vapor-Liquid Equilibria Using Equations of State |
|
|
229 | (14) |
|
5.6.1 Fitting of Binary Parameters of Cubic Equations of State |
|
|
235 | (8) |
|
5.7 Conditions for the Occurrence of Azeotropic Behavior |
|
|
243 | (9) |
|
5.8 Solubility of Gases in Liquids |
|
|
252 | (14) |
|
5.8.1 Calculation of Gas Solubilities Using Henry Constants |
|
|
254 | (8) |
|
5.8.2 Calculation of Gas Solubilities Using Equations of State |
|
|
262 | (1) |
|
5.8.3 Prediction of Gas Solubilities |
|
|
263 | (3) |
|
5.9 Liquid-Liquid Equilibria |
|
|
266 | (14) |
|
5.9.1 Temperature Dependence of Ternary LLE |
|
|
277 | (2) |
|
5.9.2 Pressure Dependence of LLE |
|
|
279 | (1) |
|
|
280 | (35) |
|
5.10.1 Regular Solution Theory |
|
|
281 | (1) |
|
5.10.2 Group Contribution Methods |
|
|
282 | (2) |
|
|
284 | (18) |
|
5.10.3.1 Modified UNIFAC (Dortmund) |
|
|
291 | (4) |
|
5.10.3.2 Weaknesses of the Group Contribution Methods UNIFAC and Modified UNIFAC |
|
|
295 | (7) |
|
5.10.4 Predictive Soave-Redlich-Kwong (PSRK) Equation of State |
|
|
302 | (4) |
|
5.10.5 VTPR Group Contribution Equation of State |
|
|
306 | (9) |
|
|
315 | (4) |
|
|
319 | (4) |
6 Caloric Properties |
|
323 | (28) |
|
6.1 Caloric Equations of State |
|
|
323 | (6) |
|
6.1.1 Internal Energy and Enthalpy |
|
|
323 | (3) |
|
|
326 | (1) |
|
6.1.3 Helmholtz Energy and Gibbs Energy |
|
|
327 | (2) |
|
6.2 Enthalpy Description in Process Simulation Programs |
|
|
329 | (14) |
|
6.2.1 Route A: Vapor as Starting Phase |
|
|
330 | (4) |
|
6.2.2 Route B: Liquid as Starting Phase |
|
|
334 | (1) |
|
6.2.3 Route C: Equation of State |
|
|
335 | (8) |
|
6.3 Caloric Properties in Chemical Reactions |
|
|
343 | (6) |
|
|
349 | (1) |
|
|
350 | (1) |
7 Electrolyte Solutions |
|
351 | (38) |
|
|
351 | (4) |
|
7.2 Thermodynamics of Electrolyte Solutions |
|
|
355 | (5) |
|
7.3 Activity Coefficient Models for Electrolyte Solutions |
|
|
360 | (21) |
|
7.3.1 Debye-Huckel Limiting Law |
|
|
360 | (1) |
|
|
361 | (1) |
|
|
361 | (3) |
|
7.3.4 NRTL Electrolyte Model by Chen |
|
|
364 | (8) |
|
|
372 | (8) |
|
|
380 | (1) |
|
7.4 Dissociation Equilibria |
|
|
381 | (2) |
|
7.5 Influence of Salts on the Vapor-Liquid Equilibrium Behavior |
|
|
383 | (2) |
|
7.6 Complex Electrolyte Systems |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
386 | (3) |
8 Solid-Liquid Equilibria |
|
389 | (32) |
|
|
389 | (3) |
|
8.2 Thermodynamic Relations for the Calculation of Solid-Liquid Equilibria |
|
|
392 | (17) |
|
8.2.1 Solid-Liquid Equilibria of Simple Eutectic Systems |
|
|
394 | (8) |
|
8.2.1.1 Freezing Point Depression |
|
|
401 | (1) |
|
8.2.2 Solid-Liquid Equilibria of Systems with Solid Solutions |
|
|
402 | (4) |
|
|
402 | (1) |
|
8.2.2.2 Solid-Liquid Equilibria for Nonideal Systems |
|
|
403 | (3) |
|
8.2.3 Solid-Liquid Equilibria with Intermolecular Compound Formation in the Solid State |
|
|
406 | (3) |
|
8.2.4 Pressure Dependence of Solid-Liquid Equilibria |
|
|
409 | (1) |
|
|
409 | (5) |
|
8.4 Solubility of Solids in Supercritical Fluids |
|
|
414 | (2) |
|
|
416 | (3) |
|
|
419 | (2) |
9 Membrane Processes |
|
421 | (6) |
|
|
421 | (3) |
|
|
424 | (1) |
|
|
425 | (1) |
|
|
426 | (1) |
10 Polymer Thermodynamics |
|
427 | (42) |
|
|
427 | (6) |
|
|
433 | (11) |
|
|
444 | (16) |
|
10.4 Influence of Polydispersity |
|
|
460 | (4) |
|
10.5 Influence of Polymer Structure |
|
|
464 | (1) |
|
|
465 | (2) |
|
|
467 | (2) |
11 Applications of Thermodynamics in Separation Technology |
|
469 | (36) |
|
|
469 | (5) |
|
11.2 Verification of Model Parameters Prior to Process Simulation |
|
|
474 | (9) |
|
11.2.1 Verification of Pure Component Parameters |
|
|
474 | (1) |
|
11.2.2 Verification of gE Model Parameters |
|
|
475 | (8) |
|
11.3 Investigation of Azeotropic Points in Multicomponent Systems |
|
|
483 | (1) |
|
11.4 Residue Curves, Distillation Boundaries, and Distillation Regions |
|
|
484 | (7) |
|
11.5 Selection of Entrainers for Azeotropic and Extractive Distillation |
|
|
491 | (8) |
|
11.6 Selection of Solvents for Other Separation Processes |
|
|
499 | (1) |
|
11.7 Selection of Solvent-Based Separation Processes |
|
|
499 | (4) |
|
|
503 | (1) |
|
|
504 | (1) |
12 Enthalpy of Reaction and Chemical Equilibria |
|
505 | (44) |
|
|
505 | (1) |
|
12.2 Enthalpy of Reaction |
|
|
506 | (5) |
|
12.2.1 Temperature Dependence |
|
|
507 | (2) |
|
12.2.2 Consideration of the Real Gas Behavior on the Enthalpy of Reaction |
|
|
509 | (2) |
|
12.3 Chemical Equilibrium |
|
|
511 | (19) |
|
12.4 Multiple Chemical Reaction Equilibria |
|
|
530 | (14) |
|
|
531 | (4) |
|
12.4.2 Gibbs Energy Minimization |
|
|
535 | (9) |
|
|
544 | (3) |
|
|
547 | (2) |
13 Examples for Complex Systems |
|
549 | (24) |
|
|
549 | (1) |
|
13.2 Formaldehyde Solutions |
|
|
549 | (6) |
|
13.3 Vapor Phase Association |
|
|
555 | (13) |
|
|
568 | (2) |
|
|
570 | (3) |
14 Practical Applications |
|
573 | (20) |
|
|
573 | (1) |
|
|
573 | (2) |
|
14.3 Joule-Thomson Effect |
|
|
575 | (2) |
|
14.4 Adiabatic Compression and Expansion |
|
|
577 | (4) |
|
|
581 | (5) |
|
14.6 Limitations of Equilibrium Thermodynamics |
|
|
586 | (3) |
|
|
589 | (2) |
|
|
591 | (2) |
15 Experimental Determination of Pure Component and Mixture Properties |
|
593 | (38) |
|
|
593 | (1) |
|
15.2 Pure Component Vapor Pressure and Boiling Temperature |
|
|
594 | (4) |
|
15.3 Enthalpy of Vaporization |
|
|
598 | (1) |
|
|
599 | (1) |
|
15.5 Vapor-Liquid Equilibria |
|
|
599 | (18) |
|
15.5.1 Dynamic VLE Stills |
|
|
601 | (3) |
|
|
604 | (7) |
|
|
611 | (2) |
|
15.5.4 Headspace Gas Chromatography (HSGC) |
|
|
613 | (1) |
|
|
614 | (2) |
|
15.5.6 Inline True Component Analysis in Reactive Mixtures |
|
|
616 | (1) |
|
15.6 Activity Coefficients at Infinite Dilution |
|
|
617 | (5) |
|
15.6.1 Gas Chromatographic Retention Time Measurement |
|
|
618 | (2) |
|
15.6.2 Inert Gas Stripping (Dilutor) |
|
|
620 | (2) |
|
15.6.3 Limiting Activity Coefficients of High Boilers in Low Boilers |
|
|
622 | (1) |
|
15.7 Liquid-Liquid Equilibria (LLE) |
|
|
622 | (1) |
|
|
623 | (1) |
|
|
624 | (2) |
|
|
626 | (1) |
|
|
626 | (5) |
16 Introduction to the Collection of Example Problems |
|
631 | (4) |
|
|
631 | (1) |
|
|
631 | (2) |
|
16.3 Examples Using the Dortmund Data Bank (DDB) and the Integrated Software Package DDBSP |
|
|
633 | (1) |
|
16.4 Examples Using Microsoft Excel and Microsoft Office VBA |
|
|
634 | (1) |
Appendix A Pure Component Parameters |
|
635 | (28) |
Appendix B Coefficients for High-Precision Equations of State |
|
663 | (6) |
|
|
668 | (1) |
Appendix C Useful Derivations |
|
669 | (52) |
|
A1 Relationship Between (partialdifferentials/partialdifferentialT)P and (partialdifferentials/partialdifferentialT)v |
|
|
670 | (1) |
|
A2 Expressions for (partialdifferentialu/partialdifferentialv)T and (partialdifferentials/partialdifferentialv)T |
|
|
670 | (1) |
|
A3 cp and cv as Derivatives of the Specific Entropy |
|
|
671 | (1) |
|
A4 Relationship Between cp and cv |
|
|
672 | (1) |
|
A5 Expression for (partialdifferentialh/partialdifferentialP)T |
|
|
673 | (1) |
|
A6 Expression for (partialdifferentials/partialdifferentialP)T |
|
|
674 | (1) |
|
A7 Expression for [ partialdifferential(g/RT)/partialdifferentialT]p and van't Hoff Equation |
|
|
674 | (1) |
|
A8 General Expression for cv |
|
|
675 | (1) |
|
A9 Expression for (partialdifferentialP/partialdifferentialv)T |
|
|
676 | (1) |
|
|
676 | (1) |
|
B1 Derivation of the Kelvin Equation |
|
|
677 | (1) |
|
B2 Equivalence of Chemical Potential µ and Gibbs Energy g for a Pure Substance |
|
|
678 | (1) |
|
B3 Phase Equilibrium Condition for a Pure Substance |
|
|
679 | (2) |
|
B4 Relationship Between Partial Molar Property and State Variable (Euler Theorem) |
|
|
681 | (1) |
|
B5 Chemical Potential in Mixtures |
|
|
681 | (1) |
|
B6 Relationship Between Second Virial Coefficients of Leiden and Berlin Form |
|
|
682 | (1) |
|
B7 Derivation of Expressions for the Speed of Sound for Ideal and Real Gases |
|
|
683 | (2) |
|
B8 Activity of the Solvent in an Electrolyte Solution |
|
|
685 | (1) |
|
B9 Temperature Dependence of the Azeotropic Composition |
|
|
686 | (2) |
|
|
688 | (3) |
|
|
691 | (1) |
|
|
692 | (1) |
|
|
692 | (1) |
|
C4 Relationship Between Excess Enthalpy and Activity Coefficient |
|
|
692 | (1) |
|
D1 Fugacity Coefficient for a Pressure-Explicit Equation of State |
|
|
692 | (2) |
|
D2 Fugacity Coefficient of the Virial Equation (Leiden Form) |
|
|
694 | (1) |
|
D3 Fugacity Coefficient of the Virial Equation (Berlin Form) |
|
|
695 | (1) |
|
D4 Fugacity Coefficient of the Soave-Redlich-Kwong Equation of State |
|
|
696 | (2) |
|
D5 Fugacity Coefficient of the PSRK Equation of State |
|
|
698 | (4) |
|
D6 Fugacity Coefficient of the VTPR Equation of State |
|
|
702 | (5) |
|
E1 Derivation of the Wilson Equation |
|
|
707 | (3) |
|
E2 Notation of the Wilson, NRTL, and UNIQUAC Equations in Process Simulation Programs |
|
|
710 | (1) |
|
E3 Inability of the Wilson Equation to Describe a Miscibility Gap |
|
|
711 | (2) |
|
F1 (h-hid) for Soave-Redlich-Kwong Equation of State |
|
|
713 | (2) |
|
F2 (s-sid) for Soave-Redlich-Kwong Equation of State |
|
|
715 | (1) |
|
F3 (g-gid) for Soave-Redlich-Kwong Equation of State |
|
|
715 | (1) |
|
F4 Antiderivatives of cidP Correlations |
|
|
715 | (2) |
|
G1 Speed of Sound as Maximum Velocity in an Adiabatic Pipe with Constant Cross-Flow Area |
|
|
717 | (1) |
|
G2 Maximum Mass Flux of an Ideal Gas |
|
|
717 | (2) |
|
|
719 | (2) |
Appendix D Standard Thermodynamic Properties for Selected Electrolyte Compounds |
|
721 | (2) |
|
|
722 | (1) |
Appendix E Regression Technique for Pure Component Data |
|
723 | (4) |
Appendix F Regression Techniques for Binary Parameters |
|
727 | (16) |
|
|
741 | (2) |
Appendix G Ideal Gas Heat Capacity Polynomial Coefficients for Selected Compounds |
|
743 | (2) |
|
|
744 | (1) |
Appendix H UNIFAC Parameters |
|
745 | (2) |
|
|
746 | (1) |
Appendix I Modified UNIFAC Parameters |
|
747 | (6) |
|
|
751 | (2) |
Appendix J PSRK Parameters |
|
753 | (4) |
|
|
755 | (2) |
Appendix K VTPR Parameters |
|
757 | (4) |
|
|
759 | (1) |
|
|
760 | (1) |
Index |
|
761 | |