Atnaujinkite slapukų nuostatas

Chemical Thermodynamics for Process Simulation 2nd, Completely Revised and Enlarged Edition [Minkštas viršelis]

(ThyssenKrupp Uhde GmbH), (ThyssenKrupp Uhde GmbH), (Universitat Oldenburg, Oldenburg, Ge), (Universitat Oldenburg, Fachbereich Chemie/Techn)
  • Formatas: Paperback / softback, 808 pages, aukštis x plotis x storis: 244x170x69 mm, weight: 1565 g
  • Išleidimo metai: 10-Apr-2019
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527343253
  • ISBN-13: 9783527343256
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 808 pages, aukštis x plotis x storis: 244x170x69 mm, weight: 1565 g
  • Išleidimo metai: 10-Apr-2019
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527343253
  • ISBN-13: 9783527343256
Kitos knygos pagal šią temą:
The only textbook that applies thermodynamics to real-world process engineering problems

This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension.

Chemical Thermodynamics for Process Simulation instructs on the behavior of fluids for pure fluids, describing the main types of equations of state and their abilities. It discusses the various quantities of interest in process simulation, their correlation, and prediction in detail. Chapters look at the important terms for the description of the thermodynamics of mixtures; the most important models and routes for phase equilibrium calculation; models which are applicable to a wide variety of non-electrolyte systems; membrane processes; polymer thermodynamics; enthalpy of reaction; chemical equilibria, and more.

-Explains thermodynamic fundamentals used in process simulation with solved examples -Includes new chapters about modern measurement techniques, retrograde condensation, and simultaneous description of chemical equilibrium -Comprises numerous solved examples, which simplify the understanding of the often complex calculation procedures, and discusses advantages and disadvantages of models and procedures -Includes estimation methods for thermophysical properties and phase equilibria thermodynamics of alternative separation processes -Supplemented with MathCAD-sheets and DDBST programs for readers to reproduce the examples

Chemical Thermodynamics for Process Simulation is an ideal resource for those working in the fields of process development, process synthesis, or process optimization, and an excellent book for students in the engineering sciences.
Preface xiii
Preface to the Second Edition xvii
List of Symbols xix
About the Authors xxix
1 Introduction 1(4)
2 PvT Behavior of Pure Components 5(58)
2.1 General Description
5(5)
2.2 Caloric Properties
10(4)
2.3 Ideal Gases
14(2)
2.4 Real Fluids
16(9)
2.4.1 Auxiliary Functions
16(1)
2.4.2 Residual Functions
17(2)
2.4.3 Fugacity and Fugacity Coefficient
19(3)
2.4.4 Phase Equilibria
22(3)
2.5 Equations of State
25(32)
2.5.1 Virial Equation
26(4)
2.5.2 High-Precision Equations of State
30(7)
2.5.3 Cubic Equations of State
37(5)
2.5.4 Generalized Equations of State and Corresponding-States Principle
42(7)
2.5.5 Advanced Cubic Equations of State
49(8)
Problems
57(3)
References
60(3)
3 Correlation and Estimation of Pure Component Properties 63(80)
3.1 Introduction
63(1)
3.2 Characteristic Physical Property Constants
63(14)
3.2.1 Critical Data
64(5)
3.2.2 Acentric Factor
69(1)
3.2.3 Normal Boiling Point
69(3)
3.2.4 Melting Point and Enthalpy of Fusion
72(2)
3.2.5 Standard Enthalpy and Standard Gibbs Energy of Formation
74(3)
3.3 Temperature-Dependent Properties
77(33)
3.3.1 Vapor Pressure
78(12)
3.3.2 Liquid Density
90(4)
3.3.3 Enthalpy of Vaporization
94(4)
3.3.4 Ideal Gas Heat Capacity
98(7)
3.3.5 Liquid Heat Capacity
105(4)
3.3.6 Speed of Sound
109(1)
3.4 Correlation and Estimation of Transport Properties
110(25)
3.4.1 Liquid Viscosity
110(5)
3.4.2 Vapor Viscosity
115(5)
3.4.3 Liquid Thermal Conductivity
120(5)
3.4.4 Vapor Thermal Conductivity
125(3)
3.4.5 Surface Tension
128(3)
3.4.6 Diffusion Coefficients
131(4)
Problems
135(3)
References
138(5)
4 Properties of Mixtures 143(30)
4.1 Introduction
143(1)
4.2 Property Changes of Mixing
144(1)
4.3 Partial Molar Properties
145(3)
4.4 Gibbs-Duhem Equation
148(2)
4.5 Ideal Mixture of Ideal Gases
150(2)
4.6 Ideal Mixture of Real Fluids
152(1)
4.7 Excess Properties
153(1)
4.8 Fugacity in Mixtures
154(2)
4.8.1 Fugacity of an Ideal Mixture
155(1)
4.8.2 Phase Equilibrium
155(1)
4.9 Activity and Activity Coefficient
156(1)
4.10 Application of Equations of State to Mixtures
157(12)
4.10.1 Virial Equation
158(1)
4.10.2 Cubic Equations of State
159(10)
Problems
169(1)
References
170(3)
5 Phase Equilibria in Fluid Systems 173(150)
5.1 Introduction
173(12)
5.2 Thermodynamic Fundamentals
185(7)
5.3 Application of Activity Coefficients
192(3)
5.4 Calculation of Vapor-Liquid Equilibria Using gE Models
195(17)
5.5 Fitting of gE Model Parameters
212(17)
5.5.1 Check of VLE Data for Thermodynamic Consistency
218(9)
5.5.2 Recommended gE Model Parameters
227(2)
5.6 Calculation of Vapor-Liquid Equilibria Using Equations of State
229(14)
5.6.1 Fitting of Binary Parameters of Cubic Equations of State
235(8)
5.7 Conditions for the Occurrence of Azeotropic Behavior
243(9)
5.8 Solubility of Gases in Liquids
252(14)
5.8.1 Calculation of Gas Solubilities Using Henry Constants
254(8)
5.8.2 Calculation of Gas Solubilities Using Equations of State
262(1)
5.8.3 Prediction of Gas Solubilities
263(3)
5.9 Liquid-Liquid Equilibria
266(14)
5.9.1 Temperature Dependence of Ternary LLE
277(2)
5.9.2 Pressure Dependence of LLE
279(1)
5.10 Predictive Models
280(35)
5.10.1 Regular Solution Theory
281(1)
5.10.2 Group Contribution Methods
282(2)
5.10.3 UNIFAC Method
284(18)
5.10.3.1 Modified UNIFAC (Dortmund)
291(4)
5.10.3.2 Weaknesses of the Group Contribution Methods UNIFAC and Modified UNIFAC
295(7)
5.10.4 Predictive Soave-Redlich-Kwong (PSRK) Equation of State
302(4)
5.10.5 VTPR Group Contribution Equation of State
306(9)
Problems
315(4)
References
319(4)
6 Caloric Properties 323(28)
6.1 Caloric Equations of State
323(6)
6.1.1 Internal Energy and Enthalpy
323(3)
6.1.2 Entropy
326(1)
6.1.3 Helmholtz Energy and Gibbs Energy
327(2)
6.2 Enthalpy Description in Process Simulation Programs
329(14)
6.2.1 Route A: Vapor as Starting Phase
330(4)
6.2.2 Route B: Liquid as Starting Phase
334(1)
6.2.3 Route C: Equation of State
335(8)
6.3 Caloric Properties in Chemical Reactions
343(6)
Problems
349(1)
References
350(1)
7 Electrolyte Solutions 351(38)
7.1 Introduction
351(4)
7.2 Thermodynamics of Electrolyte Solutions
355(5)
7.3 Activity Coefficient Models for Electrolyte Solutions
360(21)
7.3.1 Debye-Huckel Limiting Law
360(1)
7.3.2 Bromley Extension
361(1)
7.3.3 Pitzer Model
361(3)
7.3.4 NRTL Electrolyte Model by Chen
364(8)
7.3.5 LIQUAC Model
372(8)
7.3.6 MSA Model
380(1)
7.4 Dissociation Equilibria
381(2)
7.5 Influence of Salts on the Vapor-Liquid Equilibrium Behavior
383(2)
7.6 Complex Electrolyte Systems
385(1)
Problems
386(1)
References
386(3)
8 Solid-Liquid Equilibria 389(32)
8.1 Introduction
389(3)
8.2 Thermodynamic Relations for the Calculation of Solid-Liquid Equilibria
392(17)
8.2.1 Solid-Liquid Equilibria of Simple Eutectic Systems
394(8)
8.2.1.1 Freezing Point Depression
401(1)
8.2.2 Solid-Liquid Equilibria of Systems with Solid Solutions
402(4)
8.2.2.1 Ideal Systems
402(1)
8.2.2.2 Solid-Liquid Equilibria for Nonideal Systems
403(3)
8.2.3 Solid-Liquid Equilibria with Intermolecular Compound Formation in the Solid State
406(3)
8.2.4 Pressure Dependence of Solid-Liquid Equilibria
409(1)
8.3 Salt Solubility
409(5)
8.4 Solubility of Solids in Supercritical Fluids
414(2)
Problems
416(3)
References
419(2)
9 Membrane Processes 421(6)
9.1 Osmosis
421(3)
9.2 Pervaporation
424(1)
Problems
425(1)
References
426(1)
10 Polymer Thermodynamics 427(42)
10.1 Introduction
427(6)
10.2 gE Models
433(11)
10.3 Equations of State
444(16)
10.4 Influence of Polydispersity
460(4)
10.5 Influence of Polymer Structure
464(1)
Problems
465(2)
References
467(2)
11 Applications of Thermodynamics in Separation Technology 469(36)
11.1 Introduction
469(5)
11.2 Verification of Model Parameters Prior to Process Simulation
474(9)
11.2.1 Verification of Pure Component Parameters
474(1)
11.2.2 Verification of gE Model Parameters
475(8)
11.3 Investigation of Azeotropic Points in Multicomponent Systems
483(1)
11.4 Residue Curves, Distillation Boundaries, and Distillation Regions
484(7)
11.5 Selection of Entrainers for Azeotropic and Extractive Distillation
491(8)
11.6 Selection of Solvents for Other Separation Processes
499(1)
11.7 Selection of Solvent-Based Separation Processes
499(4)
Problems
503(1)
References
504(1)
12 Enthalpy of Reaction and Chemical Equilibria 505(44)
12.1 Introduction
505(1)
12.2 Enthalpy of Reaction
506(5)
12.2.1 Temperature Dependence
507(2)
12.2.2 Consideration of the Real Gas Behavior on the Enthalpy of Reaction
509(2)
12.3 Chemical Equilibrium
511(19)
12.4 Multiple Chemical Reaction Equilibria
530(14)
12.4.1 Relaxation Method
531(4)
12.4.2 Gibbs Energy Minimization
535(9)
Problems
544(3)
References
547(2)
13 Examples for Complex Systems 549(24)
13.1 Introduction
549(1)
13.2 Formaldehyde Solutions
549(6)
13.3 Vapor Phase Association
555(13)
Problems
568(2)
References
570(3)
14 Practical Applications 573(20)
14.1 Introduction
573(1)
14.2 Flash
573(2)
14.3 Joule-Thomson Effect
575(2)
14.4 Adiabatic Compression and Expansion
577(4)
14.5 Pressure Relief
581(5)
14.6 Limitations of Equilibrium Thermodynamics
586(3)
Problems
589(2)
References
591(2)
15 Experimental Determination of Pure Component and Mixture Properties 593(38)
15.1 Introduction
593(1)
15.2 Pure Component Vapor Pressure and Boiling Temperature
594(4)
15.3 Enthalpy of Vaporization
598(1)
15.4 Critical Data
599(1)
15.5 Vapor-Liquid Equilibria
599(18)
15.5.1 Dynamic VLE Stills
601(3)
15.5.2 Static Techniques
604(7)
15.5.3 Degassing
611(2)
15.5.4 Headspace Gas Chromatography (HSGC)
613(1)
15.5.5 High-Pressure VLE
614(2)
15.5.6 Inline True Component Analysis in Reactive Mixtures
616(1)
15.6 Activity Coefficients at Infinite Dilution
617(5)
15.6.1 Gas Chromatographic Retention Time Measurement
618(2)
15.6.2 Inert Gas Stripping (Dilutor)
620(2)
15.6.3 Limiting Activity Coefficients of High Boilers in Low Boilers
622(1)
15.7 Liquid-Liquid Equilibria (LLE)
622(1)
15.8 Gas Solubility
623(1)
15.9 Excess Enthalpy
624(2)
Problems
626(1)
References
626(5)
16 Introduction to the Collection of Example Problems 631(4)
16.1 Introduction
631(1)
16.2 Mathcad Examples
631(2)
16.3 Examples Using the Dortmund Data Bank (DDB) and the Integrated Software Package DDBSP
633(1)
16.4 Examples Using Microsoft Excel and Microsoft Office VBA
634(1)
Appendix A Pure Component Parameters 635(28)
Appendix B Coefficients for High-Precision Equations of State 663(6)
References
668(1)
Appendix C Useful Derivations 669(52)
A1 Relationship Between (partialdifferentials/partialdifferentialT)P and (partialdifferentials/partialdifferentialT)v
670(1)
A2 Expressions for (partialdifferentialu/partialdifferentialv)T and (partialdifferentials/partialdifferentialv)T
670(1)
A3 cp and cv as Derivatives of the Specific Entropy
671(1)
A4 Relationship Between cp and cv
672(1)
A5 Expression for (partialdifferentialh/partialdifferentialP)T
673(1)
A6 Expression for (partialdifferentials/partialdifferentialP)T
674(1)
A7 Expression for [ partialdifferential(g/RT)/partialdifferentialT]p and van't Hoff Equation
674(1)
A8 General Expression for cv
675(1)
A9 Expression for (partialdifferentialP/partialdifferentialv)T
676(1)
A10 Cardano's Formula
676(1)
B1 Derivation of the Kelvin Equation
677(1)
B2 Equivalence of Chemical Potential µ and Gibbs Energy g for a Pure Substance
678(1)
B3 Phase Equilibrium Condition for a Pure Substance
679(2)
B4 Relationship Between Partial Molar Property and State Variable (Euler Theorem)
681(1)
B5 Chemical Potential in Mixtures
681(1)
B6 Relationship Between Second Virial Coefficients of Leiden and Berlin Form
682(1)
B7 Derivation of Expressions for the Speed of Sound for Ideal and Real Gases
683(2)
B8 Activity of the Solvent in an Electrolyte Solution
685(1)
B9 Temperature Dependence of the Azeotropic Composition
686(2)
B10 Konovalov Equations
688(3)
C1 (s-sid)T,P
691(1)
C2 (h-hid)T,P
692(1)
C3 (g-gid)T,P
692(1)
C4 Relationship Between Excess Enthalpy and Activity Coefficient
692(1)
D1 Fugacity Coefficient for a Pressure-Explicit Equation of State
692(2)
D2 Fugacity Coefficient of the Virial Equation (Leiden Form)
694(1)
D3 Fugacity Coefficient of the Virial Equation (Berlin Form)
695(1)
D4 Fugacity Coefficient of the Soave-Redlich-Kwong Equation of State
696(2)
D5 Fugacity Coefficient of the PSRK Equation of State
698(4)
D6 Fugacity Coefficient of the VTPR Equation of State
702(5)
E1 Derivation of the Wilson Equation
707(3)
E2 Notation of the Wilson, NRTL, and UNIQUAC Equations in Process Simulation Programs
710(1)
E3 Inability of the Wilson Equation to Describe a Miscibility Gap
711(2)
F1 (h-hid) for Soave-Redlich-Kwong Equation of State
713(2)
F2 (s-sid) for Soave-Redlich-Kwong Equation of State
715(1)
F3 (g-gid) for Soave-Redlich-Kwong Equation of State
715(1)
F4 Antiderivatives of cidP Correlations
715(2)
G1 Speed of Sound as Maximum Velocity in an Adiabatic Pipe with Constant Cross-Flow Area
717(1)
G2 Maximum Mass Flux of an Ideal Gas
717(2)
References
719(2)
Appendix D Standard Thermodynamic Properties for Selected Electrolyte Compounds 721(2)
Reference
722(1)
Appendix E Regression Technique for Pure Component Data 723(4)
Appendix F Regression Techniques for Binary Parameters 727(16)
References
741(2)
Appendix G Ideal Gas Heat Capacity Polynomial Coefficients for Selected Compounds 743(2)
Reference
744(1)
Appendix H UNIFAC Parameters 745(2)
Further Reading
746(1)
Appendix I Modified UNIFAC Parameters 747(6)
Further Reading
751(2)
Appendix J PSRK Parameters 753(4)
Further Reading
755(2)
Appendix K VTPR Parameters 757(4)
References
759(1)
Further Readings
760(1)
Index 761
Jürgen Gmehling, PhD, is Professor of Chemical Engineering at the University of Oldenburg, Germany. He is also president and CEO of DDBST GmbH, Oldenburg, as well as cofounder of LTP GmbH, part of the Carl von Ossietzky University of Oldenburg.

Michael Kleiber, PhD, works as a Chief Development Engineer for ThyssenKrupp Uhde, Germany.

Bärbel Kolbe, PhD, is a senior process engineer for ThyssenKrupp Uhde, Germany.



Jürgen Rarey, PhD, is a professor at the University of Oldenburg, Germany, and cofounded DDBST GmbH, Oldenburg. He is also an honorary professor in Durban, South Africa.