Atnaujinkite slapukų nuostatas

El. knyga: Chemistry, Manufacture and Applications of Natural Rubber

Edited by (Kyoto Institute of Technology, Japan), Edited by (Professor Emeritus, Kyoto University, Japan)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Chemistry, Manufacture and Applications of Natural Rubber, Second Edition presents the latest advances in the processing, properties and advanced applications of natural rubber (NR), drawing on state-of-the-art research in the field. Chapters cover manufacturing, processing and properties of natural rubber, describing biosynthesis, vulcanization for improved performance, strain-induced crystallization, self-reinforcement, rheology and mechanochemistry for processing, computer simulation of properties, scattering techniques and stabilizing agents. Applications covered include natural rubber, carbon allotropes, eco-friendly soft bio-composites using NR matrices and marine products, the use of NR for high functionality such as shape memory, NR for the tire industry, and natural rubber latex with advanced applications.

This is an essential resource for academic researchers, scientists and (post)graduate students in rubber science, polymer science, materials science and engineering, and chemistry. In industry, this book enables professionals, R&D, and producers across the natural rubber, tire, rubber and elastomer industries, as well as across industries looking to use natural rubber products, to understand and utilize natural rubber for cutting-edge applications.

  • Explains the latest manufacture and processing techniques for natural rubber (NR) with enhanced properties
  • Explores novel applications of natural rubber across a range of industries, including current and potential uses
  • Discusses resources and utilization, and considers sustainable future development of natural rubber
List of contributors
xi
Preface xiii
Part One Manufacturing, processing and properties of natural rubber
1(174)
1 Chemical fundamentals relevant to natural rubber
3(20)
Shinzo Kohjiya
Yuko Ikeda
1.1 Introduction
3(1)
1.2 Natural rubber is uniquely self-reinforcing
4(2)
1.3 Chemical structure and molar mass of natural rubber
6(4)
1.4 Stereo-regularity and monomelic sequence distribution
10(2)
1.5 Template crystallization: origin of the self-reinforcing ability of natural rubber
12(4)
1.6 Concluding remarks
16(7)
References
17(6)
2 Commonalities and complexities in rubber biosynthesis
23(28)
Katrina Cornish
Sam Cherian
2.1 Introduction
23(3)
2.2 Rubber biosynthesis
26(15)
2.3 Identification and purification of rubber transferase
41(3)
2.4 Conclusion
44(7)
Acknowledgments
44(1)
References
44(7)
3 New insight into the vulcanization mechanism of natural rubber
51(22)
Yuko Ikeda
Kosuke Miyaji
3.1 Introduction
51(3)
3.2 A novel intermediate of dinuclear bridging bidentate zinc/stearate complex
54(1)
3.3 A new vulcanization mechanism via dinuclear bridging bidentate zinc/stearate complexes
55(7)
3.4 In situ variation of intermediates in the new vulcanization mechanism
62(2)
3.5 Effect of fatty acids on the N-(1, 3-benzothiazol-2-ylsulfanyl) cyclohexanamine-accelerated vulcanization of isoprene rubber by zinc/carboxylate complexes
64(1)
3.6 Concluding remarks
65(8)
Acknowledgments
69(1)
References
69(4)
4 Role of theoretical chemistry in elucidating rubber vulcanization mechanism
73(36)
Hisayoshi Kobayashi
4.1 Introduction
73(1)
4.2 From Schrodinger equation to molecular orbital method
74(6)
4.3 Handling electron correlation and brief history of density functional theory
80(5)
4.4 Typical applications of molecular orbital and density functional theory methods
85(7)
4.5 Application to rubber systems
92(8)
4.6 Concluding remarks
100(9)
Acknowledgments
100(1)
References
100(2)
Appendix
102(7)
5 Structure of natural rubber as revealed by X-ray and neutron scattering
109(44)
Ivan Krakovsky
5.1 Introduction
109(1)
5.2 Theoretical background
110(9)
5.3 Structure of unfilled NR
119(14)
5.4 Structure of NR nanocomposites
133(8)
5.5 Structure of swollen NR: visualization-by-swelling
141(4)
5.6 Future trends
145(8)
References
148(5)
6 Mechanochemistry of natural rubber during processing
153(22)
Asahiro Ahagon
6.1 Introduction
153(1)
6.2 Agglomerate network structure
154(1)
6.3 Mechanochemical reaction
155(3)
6.4 A method to detect chain scission in gel-containing compounds
158(2)
6.5 Sol---gel analysis with carbon black---filled compounds
160(4)
6.6 Processes of chain scission and bound rubber formation in mixing filled compounds
164(3)
6.7 Relationship among mechanochemistry, mixing mechanism, and agglomerate structure
167(4)
6.8 Summary
171(4)
References
172(3)
Part Two Applications of natural rubber
175(230)
7 Properties of natural rubbers from guayule and rubber dandelion
177(26)
Preeyanuch Junkong
Yuko Ikeda
7.1 Introduction
177(1)
7.2 The promising alternative natural rubber resources
178(6)
7.3 Strain-induced crystallization of guayule and dandelion natural rubbers
184(10)
7.4 The limitation and prospect of guayule and dandelion natural rubbers
194(9)
Acknowledgments
196(1)
References
196(7)
8 Utilization of carbon allotropes with special reference to carbon nanotubes and graphene for the high performance of natural rubber
203(44)
Neena George
Ajalesh B. Nair
Neethumol Varghese
Rani Joseph
8.1 Introduction
203(5)
8.2 Carbon nanotubes
208(4)
8.3 Natural rubber/carbon nanotube composites
212(20)
8.4 Natural rubber/graphene composites
232(5)
8.5 Applications of natural rubber/carbon nanotube and natural rubber/graphene composites
237(2)
8.6 Conclusion
239(8)
References
240(7)
9 Natural rubber and epoxidized natural rubber in combination with silica fillers for low rolling resistance tires
247(70)
W. Kaewsakul
J.W.M. Noordermeer
K. Sahakaro
K. Sengloyluan
P. Saramolee
W.K. Dierkes
A. Blume
9.1 Introduction
248(12)
9.2 Silica-reinforced conventional natural rubber compounds
260(16)
9.3 Epoxidized natural rubber as raw material for tire tread compounds
276(9)
9.4 Compatibilizing silica-filled natural rubber systems by epoxidized natural rubbers
285(24)
9.5 Summary
309(8)
Acknowledgments
310(1)
References
310(7)
10 Fundamentals and recent applications of natural rubber latex in dipping technology
317(46)
C.C. Ho
10.1 Introduction
317(2)
10.2 Objectives
319(1)
10.3 Fresh field latex from Hevea brasiliensis trees
319(1)
10.4 Mechanistic and structural role of ammonia in lipid hydrolysis of natural rubber latex
320(2)
10.5 Role of proteins and lipids in surface microstructures of natural rubber latex particles
322(13)
10.6 Complex colloidal nature of compounded natural rubber latex
335(1)
10.7 Role of prevulcanization in rubber network formation
336(5)
10.8 Pivotal role of latex film formation in prerequisites of barrier material
341(3)
10.9 Latex gel---latex dispersion interface (soft latex gel formation)
344(2)
10.10 Salient features of interfacial phenomena in latex (glove) dipping
346(8)
10.11 Gloves for niche and special applications
354(1)
10.12 Future trends
354(9)
References
355(8)
11 Potential application of natural rubber latex nanoparticles to tissue engineering
363(42)
Masami Okamoto
11.1 Introduction
363(2)
11.2 Characterization of natural rubber latex nanoparticles
365(5)
11.3 Cytotoxicity of natural rubber latex nanoparticles
370(12)
11.4 Pharmacological potential in target application in tissue engineering
382(6)
11.5 Fabrication of biocomposites composed of natural rubber latex and tissue
388(11)
11.6 Conclusions and future outlook
399(6)
Acknowledgments
400(1)
References
400(5)
Part Three Research retrospectives and future developments
405(72)
12 A short history of natural rubber research
407(22)
Shinzo Kohjiya
Yuko Ikeda
12.1 Introduction: rubber science and rubber technics
407(3)
12.2 Prehistory of natural rubber research
410(3)
12.3 Invention of vulcanization
413(2)
12.4 Plant introduction of Hevea from the Amazon valley to Asia: domestication of the wild NR to the cultivated NR
415(4)
12.5 Sophistication of vulcanization and reinforcement techniques
419(3)
12.6 Coexistence of natural rubber and synthetic rubbers
422(7)
References
423(6)
13 Establishing Rubber Research Institute and facilitating a century of natural rubber research activity in Sri Lanka
429(34)
Priyani Seneviratne
13.1 Introduction
429(1)
13.2 Retrospective views
430(8)
13.3 Local clones
438(7)
13.4 Journey toward high-quality planting material and techniques
445(8)
13.5 Further developments
453(5)
13.6 Prospective view on the natural rubber industry
458(2)
13.7 Concluding remarks
460(3)
References
460(2)
Further reading
462(1)
14 Sustainable development of natural rubber in the 21st century
463(14)
Shinzo Kohjiya
14.1 Modern approach in rubber science
463(3)
14.2 Natural rubber and sustainable development goal
466(2)
14.3 Prospective views of the technological development of natural rubber
468(2)
14.4 Prospective views of the agricultural development of natural rubber
470(1)
14.5 What! Does "automatic driving of an automobile" make sense?
471(4)
14.6 Globalization: its technical and social aspects
475(2)
References 477(4)
Index 481
Shinzo Kohjiya is a Professor Emeritus, Kyoto University, Japan. Yuko Ikeda is an Associate Professor at the Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Japan.