Atnaujinkite slapukų nuostatas

El. knyga: Chinese Computational Linguistics: 23rd China National Conference, CCL 2024, Taiyuan, China, July 25-28, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 23rd China National Conference on Chinese Computational Linguistics, CCL 2024, held in Taiyuan, China, during July 2528, 2024.





The 34 full papers included in this book were carefully reviewed and selected from 320 submissions. They were organized in topical sections as follows: Information Retrieval, Text Classification and QA; Text Generation, Dialogue and Summarization; Machine Translation and Multilingual Information Processing; Knowledge Graph and Information Extraction; Social Computing and Sentiment Analysis; NLP Applications; Fundamental Theory and Method of Language Computing and Cognition; Language Resource and Evaluation; and Large Language Models.
.- Information Retrieval, Text Classification and QA.

.- Enhancing Free-Form Table Question Answering Models by Distilling
Relevant-Cell-Based Rationales.

.- Enhangcing Sequence Representation for Personalized Search.

.- Joint Similarity Guidance Hash Coding Based on Adaptive Weight Mixing
Strategy For Cross-Modal Retrieval.

.- Text Generation, Dialogue and Summarization.

.- Generate-then-Revise: An Effective Synthetic Training Data Generation
framework for Event Detection.

.- Machine Translation and Multilingual Information Processing.

.- E³: Optimizing Language Model Training for Translation via Enhancing
Efficiency and Effectiveness.

.- Multi-features Enhanced Multi-task Learning for Vietnamese Treebank
Conversion.

.- SimCLNMT: A Simple Contrastive Learning Method for Enhancing Neural
Machine Translation Quality.

.- Translate-and-Revise: Boosting Large Language Models for Constrained
Translation.

.- Knowledge Graph and Information Extraction.

.- A Multi-Task Biomedical Named Entity Recognition Method Based on Data
Augmentation.

.- Biomedical Event Causal Relation Extraction by Reasoning Optimal Entity
Relation Path.

.- Joint Entity and Relation Extraction Based on Bidirectional Update and
Long-Term Memory Gate Mechanism.

.- MFE-NER:Multi-feature Fusion Embedding for Chinese Named Entity
Recognition.

.- UDAA: An Unsupervised Domain Adaptation Adversarial Learning Framework for
Zero-Resource Cross-Domain Named Entity Recognition.

.- Social Computing and Sentiment Analysis.

.- Triple-view Event Hierarchy Model for Biomedical Event Representation.

.- NLP Applications.

.- DialectMoE: An End-to-End Multi-Dialect Speech Recognition Model with
Mixture-of-Experts.

.- Distinguishing Neural Speech Synthesis Models Through Fingerprints in
Speech Waveforms.

.- Knowledge Graph-Enhanced Recommendation with Box Embeddings.

.- Readability-guided Idiom-aware Sentence Simplification(RISS) for Chinese.

.- Fundamental Theory and Method of Language Computing and Cognition.

.- A Tone-based Hierarchical Structure of Chinese Prosody.

.- Linguistic Guidance for Sequence-to-Sequence AMR Parsing.

.- Language Resource and Evaluation.

.- Automatic Construction of the English Sentence Pattern Structure Treebank
for Chinese ESL learners.

.- Cost-efficient Crowdsourcing for Span-based Sequence Labeling:Worker
Selection and Data Augmentation.

.- DLUE: Benchmarking Document Language Understanding.

.- Do Large Language Models Understand Conversational Implicature- A case
study with a Chinese sitcom.

.- EmoFake: An Initial Dataset for Emotion Fake Audio Detection.

.- Going Beyond Passages:Readability Assessment for Book-level Long Texts.

.- Mitigating the Bias of Large Language Model Evaluation.

.- PPDAC: A Plug-and -Play Data Augmentation Component for Few-shot
Extractive Question Answering.

.- Sentence-Space Metrics (SSM) for the Evaluation of Sentence
Comprehension.

.- Large Language Models.

.- AuditWen: An Open-Source Large Language Model for Audit.

.- Chinese Grammatical Error Correction via Large Language Model Guided
Optimization Training.

.- Pattern Shifting or Knowledge Losing? A Forgetting Perspective for
Understanding the Effect of Instruction Fine-Tuning.

.- Prior Constrains-based Reward Model Training for Aligning Large Language
Models.

.- Prompt Engineering 101 Prompt Engineering Guidelines from a Linguistic
Perspective.