Atnaujinkite slapukų nuostatas

El. knyga: Chromatic Graph Theory

3.67/5 (12 ratings by Goodreads)
(Western Michigan University, Kalamazoo, USA), (Western Michigan University, Kalamazoo, USA)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics.

This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex colorings.

With historical, applied, and algorithmic discussions, this text offers a solid introduction to one of the most popular areas of graph theory.

Recenzijos

The book is written in a student-friendly style with carefully explained proofs and examples and contains many exercises of varying difficulty. The book is intended for standard courses in graph theory, reading courses and seminars on graph colourings, and as a reference book for individuals interested in graphs colourings. Zentralblatt MATH 1169

well-conceived and well-written book written in a reader-friendly style, and there is a sufficient number of exercises at the end of each chapter. Miklós Bóna, University of Florida, MAA Online, January 2009 The book is written in a student-friendly style with carefully explained proofs and examples and contains many exercises of varying difficulty. The book is intended for standard courses in graph theory, reading courses and seminars on graph colourings, and as a reference book for individuals interested in graphs colourings. Zentralblatt MATH 1169

well-conceived and well-written book written in a reader-friendly style, and there is a sufficient number of exercises at the end of each chapter. Miklós Bóna, University of Florida, MAA Online, January 2009

The Origin of Graph Colorings 1(26)
Introduction to Graphs
27(26)
Fundamental Terminology
27(3)
Connected Graphs
30(3)
Distance in Graphs
33(4)
Isomorphic Graphs
37(2)
Common Graphs and Graph Operations
39(5)
Multigraphs and Digraphs
44(9)
Exercises for
Chapter 1
47(6)
Trees and Connectivity
53(18)
Cut-vertices, Bridges, and Blocks
56(1)
Trees
56(3)
Connectivity and Edge-Connectivity
59(4)
Menger's Theorem
63(8)
Exercises for
Chapter 2
67(4)
Eulerian and Hamiltonian Graphs
71(20)
Eulerian Graphs
71(5)
De Bruijn Digraphs
76(3)
Hamiltonian Graphs
79(12)
Exercises for
Chapter 3
87(4)
Matchings and Factorization
91(18)
Matchings
91(7)
Independence in Graphs
98(2)
Factors and Factorization
100(9)
Exercises for
Chapter 4
106(3)
Graph Embeddings
109(38)
Planar Graphs and the Euler Identity
109(9)
Hamiltonian Planar Graphs
118(2)
Planarity Versus Nonplanarity
120(11)
Embedding Graphs on Surfaces
131(8)
The Graph Minor Theorem
139(8)
Exercises for
Chapter 5
141(6)
Introduction to Vertex Colorings
147(28)
The Chromatic Number of a Graph
147(6)
Applications of Colorings
153(7)
Perfect Graphs
160(15)
Exercises for
Chapter 6
170(5)
Bounds for the Chromatic Number
175(30)
Color-Critical Graphs
175(4)
Upper Bounds and Greedy Colorings
179(10)
Upper Bounds and Oriented Graphs
189(6)
The Chromatic Number of Cartesian Products
195(10)
Exercises for
Chapter 7
200(5)
Coloring Graphs on Surfaces
205(18)
The Four Color Problem
205(3)
The Conjectures of Hajos and Hadwiger
208(3)
Chromatic Polynomials
211(6)
The Heawood Map-Coloring Problem
217(6)
Exercises for
Chapter 8
219(4)
Restricted Vertex Colorings
223(26)
Uniquely Colorable Graphs
223(7)
List Colorings
230(10)
Precoloring Extensions of Graphs
240(9)
Exercises for
Chapter 9
245(4)
Edge Colorings of Graphs
249(40)
The Chromatic Index and Vizing's Theorem
249(6)
Class One and Class Two Graphs
255(7)
Tait Colorings
262(7)
Nowhere-Zero Flows
269(10)
List Edge Colorings
279(3)
Total Colorings of Graphs
282(7)
Exercises for
Chapter 10
284(5)
Monochromatic and Rainbow Colorings
289(40)
Ramsey Numbers
289(7)
Turan's Theorem
296(3)
Rainbow Ramsey Numbers
299(7)
Rainbow Numbers of Graphs
306(8)
Rainbow-Connected Graphs
314(6)
The Road Coloring Problem
320(9)
Exercises for
Chapter 11
324(5)
Complete Colorings
329(30)
The Achromatic Number of a Graph
329(6)
Graph Homomorphisms
335(14)
The Grundy Number of a Graph
349(10)
Exercises for
Chapter 12
356(3)
Distinguishing Colorings
359(38)
Edge-Distinguishing Vertex Colorings
359(11)
Vertex-Distinguishing Edge Colorings
370(9)
Vertex-Distinguishing Vertex Colorings
379(6)
Neighbor-Distingushing Edge Colorings
385(12)
Exercises for
Chapter 13
391(6)
Colorings, Distance, and Domination
397(42)
T-Colorings
397(6)
L(2,1)-Colorings
403(7)
Radio Colorings
410(7)
Hamiltonian Colorings
417(8)
Domination and Colorings
425(9)
Epilogue
434(5)
Exercises for
Chapter 14
434(5)
Appendix: Study Projects 439(7)
General References 446(7)
Bibliography 453(12)
Index (Names and Mathematical Terms) 465(15)
List of Symbols 480
Western Michigan University, Kalamazoo, Michigan, USA Monmouth University, Middletown, New Jersey, USA