Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
An Introduction to Circuit Analysis |
|
|
1 | (24) |
|
What Is Circuit Analysis? |
|
|
2 | (1) |
|
|
2 | (7) |
|
|
9 | (2) |
|
|
11 | (2) |
|
Time Varying Voltage and Voltage Sources |
|
|
13 | (3) |
|
Dependent Voltage Sources |
|
|
16 | (1) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (3) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (2) |
|
Kirchhoff's Laws and Resistance |
|
|
25 | (33) |
|
Branches, Nodes, and Loops |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
28 | (3) |
|
|
31 | (2) |
|
|
33 | (1) |
|
Circuit Analysis with Resistors |
|
|
34 | (3) |
|
Root Mean Square (RMS) Values |
|
|
37 | (4) |
|
Voltage and Current Dividers |
|
|
41 | (5) |
|
|
46 | (7) |
|
|
53 | (1) |
|
|
54 | (4) |
|
Thevenin's and Norton's Theorems |
|
|
58 | (28) |
|
|
59 | (1) |
|
Step One: Disconnect the Outside Network |
|
|
60 | (1) |
|
Step Two: Set Independent Sources to Zero |
|
|
61 | (1) |
|
Step Three: Measure the Resistance at Terminals A and B |
|
|
61 | (1) |
|
Series and Parallel Circuits |
|
|
61 | (6) |
|
Back to Thevenin's Theorem |
|
|
67 | (10) |
|
Thevenin's Theorem Using the Karni Method |
|
|
77 | (5) |
|
Norton's Theorem and Norton Equivalent Circuits |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (2) |
|
|
86 | (11) |
|
|
86 | (7) |
|
|
93 | (3) |
|
|
96 | (1) |
|
Delta-Wye Transformations and Bridge Circuits |
|
|
97 | (6) |
|
Delta-Wye Transformations |
|
|
97 | (4) |
|
|
101 | (1) |
|
|
102 | (1) |
|
Capacitance and Inductance |
|
|
103 | (29) |
|
|
103 | (1) |
|
Capacitors in Parallel or Series |
|
|
104 | (2) |
|
Voltage-Current Relations in a Capacitor |
|
|
106 | (1) |
|
Voltage in Terms of Current |
|
|
107 | (2) |
|
Power and Energy in the Capacitor |
|
|
109 | (1) |
|
Time Constants, Zero-Input Response, and First-Order RC Circuits |
|
|
110 | (4) |
|
|
114 | (1) |
|
Inductors in Series and in Parallel |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
Zero-Input Analysis of First-Order RL Circuits |
|
|
116 | (1) |
|
|
117 | (3) |
|
Zero-Input Response in an RL Circuit |
|
|
120 | (5) |
|
|
125 | (5) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (20) |
|
Basics on Complex Numbers |
|
|
132 | (2) |
|
|
134 | (1) |
|
Sinusoids and Complex Numbers |
|
|
134 | (3) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
Dynamic Elements and Sinusoidal Sources |
|
|
139 | (1) |
|
|
140 | (2) |
|
Properties of the Phasor Transform |
|
|
142 | (1) |
|
Circuit Analysis Using Phasors |
|
|
143 | (4) |
|
|
147 | (3) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (20) |
|
|
152 | (4) |
|
The Frequency Response of a Circuit |
|
|
156 | (8) |
|
|
164 | (5) |
|
|
169 | (1) |
|
|
170 | (2) |
|
|
172 | (7) |
|
The Noninverting Amplifier |
|
|
173 | (2) |
|
|
175 | (1) |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
178 | (1) |
|
Sinusoidal Steady-State Power Calculations |
|
|
179 | (18) |
|
|
179 | (4) |
|
|
183 | (2) |
|
Average and Reactive Power |
|
|
185 | (2) |
|
The RMS Value and Power Calculations |
|
|
187 | (7) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
197 | (5) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
200 | (2) |
|
|
202 | (4) |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (1) |
|
Network Analysis Using Laplace Transforms |
|
|
206 | (22) |
|
|
207 | (3) |
|
|
210 | (1) |
|
The Inverse Laplace Transform |
|
|
211 | (3) |
|
Analyzing Circuits Using Laplace Transforms |
|
|
214 | (4) |
|
|
218 | (3) |
|
Zero-State Response and the Network Function |
|
|
221 | (3) |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (2) |
|
|
228 | (13) |
|
|
231 | (5) |
|
Zero-Input Response Stability |
|
|
236 | (1) |
|
Bounded Input-Bounded Output Stability |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
240 | (1) |
|
Bode Plots and Butterworth Filters |
|
|
241 | (19) |
|
Asymptotic Behavior of Functions |
|
|
242 | (2) |
|
|
244 | (1) |
|
|
245 | (7) |
|
|
252 | (2) |
|
|
254 | (5) |
|
|
259 | (1) |
Final Exam |
|
260 | (10) |
Quiz and Exam Solutions |
|
270 | (11) |
References |
|
281 | (2) |
Index |
|
283 | |