|
1 Basic Newtonian Physics with Maxima |
|
|
1 | (24) |
|
1.1 Introduction to Maxima |
|
|
1 | (2) |
|
1.1.1 Computer Algebra Systems |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2 Interacting with Maxima |
|
|
3 | (3) |
|
1.2.1 The wxMaxima Screen |
|
|
5 | (1) |
|
1.3 Maxima as a Calculator |
|
|
6 | (3) |
|
|
7 | (1) |
|
1.3.2 Mathematical Functions |
|
|
7 | (2) |
|
1.4 1D Kinematics: Variables and Functions |
|
|
9 | (2) |
|
1.5 2D Kinematics: Vectors |
|
|
11 | (1) |
|
1.6 Projectile Motion: Solving Equations |
|
|
12 | (1) |
|
1.7 Position, Velocity, and Acceleration: Calculus |
|
|
13 | (2) |
|
1.8 Newton's Second Law: Solving ODEs |
|
|
15 | (1) |
|
1.9 Range of a Projectile: Root Finding |
|
|
16 | (3) |
|
1.10 Visualizing Motion in Maxima |
|
|
19 | (2) |
|
|
21 | (4) |
|
|
25 | (32) |
|
|
25 | (4) |
|
2.2 Constant Forces: Block on a Wedge |
|
|
29 | (3) |
|
2.3 Velocity-Dependent Forces: Air Resistance |
|
|
32 | (16) |
|
2.3.1 Models of Air Resistance |
|
|
32 | (2) |
|
2.3.2 Falling with Linear Resistance |
|
|
34 | (3) |
|
2.3.3 Projectile Motion with Linear Resistance |
|
|
37 | (2) |
|
2.3.4 Falling with Quadratic Resistance |
|
|
39 | (4) |
|
2.3.5 Projectile Motion with Quadratic Resistance |
|
|
43 | (5) |
|
2.4 Charged Particles in an Electromagnetic Field |
|
|
48 | (6) |
|
|
54 | (3) |
|
|
57 | (28) |
|
3.1 Collisions: Conservation of Momentum |
|
|
57 | (5) |
|
|
62 | (5) |
|
|
67 | (3) |
|
3.4 Torque and Angular Momentum |
|
|
70 | (2) |
|
3.5 Products and Moments of Inertia |
|
|
72 | (3) |
|
3.6 Work and Potential Energy |
|
|
75 | (3) |
|
3.7 Fall from a Great Height: Conservation of Energy |
|
|
78 | (5) |
|
|
83 | (2) |
|
|
85 | (40) |
|
4.1 Stable and Unstable Equilibrium Points |
|
|
85 | (4) |
|
4.2 Simple Harmonic Motion |
|
|
89 | (3) |
|
4.3 Two-Dimensional Harmonic Oscillator |
|
|
92 | (5) |
|
4.4 Damped Harmonic Oscillator |
|
|
97 | (5) |
|
4.4.1 Underdamped Oscillators |
|
|
98 | (1) |
|
4.4.2 Overdamped Oscillators |
|
|
99 | (2) |
|
|
101 | (1) |
|
4.5 Driven Damped Harmonic Oscillator |
|
|
102 | (6) |
|
4.6 Non-sinusoidal Driving Forces |
|
|
108 | (7) |
|
|
115 | (7) |
|
|
122 | (3) |
|
5 Physics and Computation |
|
|
125 | (40) |
|
5.1 Programming: Loops and Decision Structures |
|
|
125 | (5) |
|
|
126 | (3) |
|
5.1.2 Decision Structures |
|
|
129 | (1) |
|
5.2 Random Numbers and Random Walks |
|
|
130 | (8) |
|
|
131 | (1) |
|
5.2.2 Evolution of an Ensemble |
|
|
132 | (2) |
|
|
134 | (3) |
|
5.2.4 Nonuniform Distributions |
|
|
137 | (1) |
|
5.3 Iterated Maps and the Newton--Raphson Method |
|
|
138 | (8) |
|
5.3.1 Iterated Functions and Attractors |
|
|
140 | (2) |
|
5.3.2 The Newton--Raphson Method |
|
|
142 | (4) |
|
5.4 Liouville's Theorem and Ordinary Differential Equation Solvers |
|
|
146 | (14) |
|
5.4.1 The Euler Algorithm |
|
|
147 | (8) |
|
5.4.2 The Euler--Cromer Algorithm |
|
|
155 | (4) |
|
5.4.3 Comparing Algorithms |
|
|
159 | (1) |
|
|
160 | (5) |
|
|
165 | (56) |
|
|
165 | (1) |
|
6.2 The van der Pol Oscillator |
|
|
166 | (9) |
|
|
166 | (4) |
|
|
170 | (5) |
|
6.3 The Driven Damped Pendulum |
|
|
175 | (17) |
|
6.3.1 Solving the Driven Damped Pendulum |
|
|
175 | (3) |
|
|
178 | (4) |
|
|
182 | (4) |
|
|
186 | (6) |
|
|
192 | (15) |
|
|
192 | (7) |
|
6.4.2 Bifurcation Diagrams |
|
|
199 | (2) |
|
6.4.3 Diverging Trajectories |
|
|
201 | (2) |
|
|
203 | (4) |
|
6.5 Fixed Points, Stability, and Chaos |
|
|
207 | (11) |
|
6.5.1 Stability of Fixed Points |
|
|
207 | (2) |
|
6.5.2 Fixed Points of the Logistic Map |
|
|
209 | (2) |
|
6.5.3 Stability of Periodic Points |
|
|
211 | (2) |
|
6.5.4 Graphical Analysis of Fixed Points |
|
|
213 | (5) |
|
|
218 | (3) |
|
|
221 | (34) |
|
|
221 | (2) |
|
A.2 Numerical Integration |
|
|
223 | (12) |
|
A.2.1 Rectangular Approximation |
|
|
225 | (3) |
|
A.2.2 Trapezoidal Approximation and Simpson's Rule |
|
|
228 | (2) |
|
A.2.3 Monte Carlo Methods |
|
|
230 | (2) |
|
|
232 | (3) |
|
A.3 Runge--Kutta Algorithms |
|
|
235 | (8) |
|
|
243 | (7) |
|
|
244 | (4) |
|
|
248 | (2) |
|
|
250 | (5) |
Index |
|
255 | |