Atnaujinkite slapukų nuostatas

El. knyga: Classical and Multilinear Harmonic Analysis: Volume 2

(Cornell University, New York), (University of Chicago)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional CalderónZygmund and LittlewoodPaley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; CoifmanMeyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Recenzijos

Review of the set: 'The two-volume set under review is a worthy addition to this tradition from two of the younger generation of researchers. It is remarkable that the authors have managed to fit all of this into [ this number of] smaller-than-average pages without omitting to provide motivation and helpful intuitive remarks. Altogether, these books are a most welcome addition to the literature of harmonic analysis.' Gerald B. Folland, Mathematical Reviews

Daugiau informacijos

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Preface; Acknowledgements;
1. Leibniz rules and gKdV equations;
2.
Classical paraproducts;
3. Paraproducts on polydiscs;
4. Calderón commutators
and the Cauchy integral;
5. Iterated Fourier series and physical reality;
6.
The bilinear Hilbert transform;
7. Almost everywhere convergence of Fourier
series;
8. Flag paraproducts;
9. Appendix: multilinear interpolation;
Bibliography; Index.
Camil Muscalu is Associate Professor of Mathematics at Cornell University, New York. Wilhelm Schlag is Professor in the Department of Mathematics at the University of Chicago.