Atnaujinkite slapukų nuostatas

El. knyga: Classification of Pseudo-reductive Groups

  • Formatas: 256 pages
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 10-Nov-2015
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9781400874026
Kitos knygos pagal šią temą:
  • Formatas: 256 pages
  • Serija: Annals of Mathematics Studies
  • Išleidimo metai: 10-Nov-2015
  • Leidėjas: Princeton University Press
  • Kalba: eng
  • ISBN-13: 9781400874026
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In the earlier monograph Pseudo-reductive Groups, Brian Conrad, Ofer Gabber, and Gopal Prasad explored the general structure of pseudo-reductive groups. In this new book,Classification of Pseudo-reductive Groups, Conrad and Prasad go further to study the classification over an arbitrary field. An isomorphism theorem proved here determines the automorphism schemes of these groups. The book also gives a Tits-Witt type classification of isotropic groups and displays a cohomological obstruction to the existence of pseudo-split forms. Constructions based on regular degenerate quadratic forms and new techniques with central extensions provide insight into new phenomena in characteristic 2, which also leads to simplifications of the earlier work. A generalized standard construction is shown to account for all possibilities up to mild central extensions.

The results and methods developed in Classification of Pseudo-reductive Groupswill interest mathematicians and graduate students who work with algebraic groups in number theory and algebraic geometry in positive characteristic.

Recenzijos

"This book is beautiful and will be at the origin of many advances in the general theory of arbitrary algebraic groups."--Bertrand Remy, MathSciNet

1 Introduction
1(14)
1.1 Motivation
1(3)
1.2 Root systems and new results
4(1)
1.3 Exotic groups and degenerate quadratic forms
5(1)
1.4 Tame central extensions
6(2)
1.5 Generalized standard groups
8(2)
1.6 Minimal type and general structure theorem
10(1)
1.7 Galois-twisted forms and Tits classification
11(2)
1.8 Background, notation, and acknowledgments
13(2)
2 Preliminary notions
15(13)
2.1 Standard groups, Levi subgroups, and root systems
15(4)
2.2 The basic exotic construction
19(2)
2.3 Minimal type
21(7)
3 Field-theoretic and linear-algebraic invariants
28(29)
3.1 A non-standard rank-1 construction
28(9)
3.2 Minimal field of definition for Ru(G-k)
37(4)
3.3 Root field and applications
41(9)
3.4 Application to classification results
50(7)
4 Central extensions and groups locally of minimal type
57(9)
4.1 Central quotients
57(3)
4.2 Beyond the quadratic case
60(2)
4.3 Groups locally of minimal type
62(4)
5 Universal smooth k-tame central extension
66(13)
5.1 Construction of central extensions
66(7)
5.2 A universal construction
73(2)
5.3 Properties and applications of G
75(4)
6 Automorphisms, isomorphisms, and Tits classification
79(29)
6.1 Isomorphism Theorem
79(11)
6.2 Automorphism schemes
90(3)
6.3 Tits-style classification
93(15)
7 Constructions with regular degenerate quadratic forms
108(30)
7.1 Regular degenerate quadratic forms
109(12)
7.2 Conformal isometries
121(9)
7.3 Severi--Brauer varieties
130(8)
8 Constructions when Φ has a double bond
138(33)
8.1 Additional constructions for type B
138(6)
8.2 Constructions for type C
144(10)
8.3 Exceptional construction for rank 2
154(8)
8.4 Generalized exotic groups
162(4)
8.5 Structure of ZG and ZG,c
166(5)
9 Generalization of the standard construction
171(10)
9.1 Generalized standard groups
171(8)
9.2 Structure theorem
179(2)
A Pseudo-isogenies
181(6)
A.1 Main result
181(1)
A.2 Proof of Pseudo-Isogeny Theorem
182(3)
A.3 Relation with the semisimple case
185(2)
B Clifford constructions
187(19)
B.1 Type B
188(1)
B.2 Type C
189(1)
B.3 Cases with [ k: k2] ≤ 8
190(7)
B.4 Type BC
197(9)
C Pseudo-split and quasi-split forms
206
C.1 General characteristic
206(8)
C.2 Quasi-split forms
214(12)
C.3 Rank-1 cases
226(2)
C.4 Higher-rank and non-reduced cases
228
Brian Conrad is professor of mathematics at Stanford University. Gopal Prasad is the Raoul Bott Professor of Mathematics at the University of Michigan.