Atnaujinkite slapukų nuostatas

El. knyga: Clifford Algebras: Applications to Mathematics, Physics, and Engineering

  • Formatas: PDF+DRM
  • Serija: Progress in Mathematical Physics 34
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461220442
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematical Physics 34
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461220442

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Daugiau informacijos

Springer Book Archives
I. Clifford Analysis.-
1. The Morera Problem in Clifford Algebras and
the Heisenberg Group.-
2. Multidimensional Inverse Scattering Associated with
the Schrödinger Equation.-
3. On Discrete Stokes and NavierStokes Equations
in the Plane.-
4. A Symmetric Functional Calculus for Systems of Operators of
Type ?.-
5. Poincaré Series in Clifford Analysis.-
6. Harmonic Analysis for
General First Order Differential Operators in Lipschitz Domains.-
7.
PaleyWiener Theorems and Shannon Sampling in the Clifford Analysis Setting.-
8. Bergman Projection in Clifford Analysis.-
9. Quaternionic Calculus for a
Class of Initial Boundary Value Problems.- II. Geometry.-
10. A Nahm
Transform for Instantons over ALE Spaces.-
11. Hyper-Hermitian Manifolds and
Connections with Skew-Symmetric Torsion.-
12. Casimir Elements and Bochner
Identities on Riemannian Manifolds.-
13. Eigenvalues of Dirac and
RaritaSchwinger Operators.-
14. Differential Forms Canonically Associated to
Even-Dimensional Compact Conformal Manifolds.-
15. The Interface of
Noncommutative Geometry and Physics.- III. Mathematical Structures.-
16. The
Method of Virtual Variables and Representations of Lie Superalgebras.-
17.
Algebras Like Clifford Algebras.-
18. Grade Free Product Formulę from
GrassmannHopf Gebras.-
19. The Clifford Algebra in the Theory of Algebras,
Quadratic Forms, and Classical Groups.-
20. Lipschitzs Methods of 1886
Applied to Symplectic Clifford Algebras.-
21. The Group of Classes of
Involutions of Graded Central Simple Algebras.-
22. A Binary Index Notation
for Clifford Algebras.-
23. Transposition in Clifford Algebra: SU(3) from
Reorientation Invariance.- IV. Physics.-
24. The Quantum/Classical Interface:
Insights from Cliffords (Geometric) Algebra.-
25. Standard Quantum Spheres.-
26.Clifford Algebras, Pure Spinors and the Physics of Fermions.-
27. Spinor
Formulations for Gravitational Energy-Momentum.-
28. Chiral Dirac Equations.-
29. Using Octonions to Describe Fundamental Particles.-
30. Applications of
Geometric Algebra in Electromagnetism, Quantum Theory and Gravity.-
31.
Noncommutative Physics on Lie Algebras, (?2)n Lattices and Clifford
Algebras.-
32. Dirac Operator on Quantum Homogeneous Spaces and
Noncommutative Geometry.-
33. r-Fold Multivectors and Superenergy.-
34. The
Cl7 Approach to the Standard Model.- V. Applications in Engineering.-
35.
Implementation of a Clifford Algebra Co-Processor Design on a Field
Programmable Gate Array.-
36. Image Space.-
37. Pose Estimation of Cycloidal
Curves by using Twist Representations.