Atnaujinkite slapukų nuostatas

El. knyga: Cluster Algebras and Poisson Geometry

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichmüller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.|Cluster algebras, introduced by Fomin and Zelevinsky in 2001, are commutative rings with unit and no zero divisors equipped with a distinguished family of generators (cluster variables) grouped in overlapping subsets (clusters) of the same cardinality (the rank of the cluster algebra) connected by exchange relations. Examples of cluster algebras include coordinate rings of many algebraic varieties that play a prominent role in representation theory, invariant theory, the study of total positivity, etc. The theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links to a wide range of subjects including representation theory, discrete dynamical systems, Teichmüller theory, and commutative and non-commutative algebraic geometry. This book is the first devoted to cluster algebras. After presenting the necessary introductory material about Poisson geometry and Schubert varieties in the first two chapters, the authors introduce cluster algebras and prove their main properties in Chapter 3. This chapter can be viewed as a primer on the theory of cluster algebras. In the remaining chapters, the emphasis is made on geometric aspects of the cluster algebra theory, in particular on its relations to Poisson geometry and to the theory of integrable systems.
Michael J. Shapiro, professor of political science at the University of Hawai'i, is the author of numerous books, including Methods and Nations: Cultural Governance and the Indigenous Subject.