Atnaujinkite slapukų nuostatas

El. knyga: Collective Excitations In Unconventional Superconductors And Superfluids

(Rostov State Univ, Russia)
  • Formatas: 860 pages
  • Išleidimo metai: 20-Nov-2009
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814474276
Kitos knygos pagal šią temą:
  • Formatas: 860 pages
  • Išleidimo metai: 20-Nov-2009
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814474276
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics the path (functional) integral technique authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF&SC.The monograph creates the new scientific direction the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas.
Preface vii
Introduction xxi
Functional Integration Method
1(30)
Functional integrals in statistical physics
1(1)
Functional integrals and diagram techniques for Bose-particles
2(19)
Functional integrals and diagram techniques for Fermi-particles
21(6)
Method of successive integration over fast and slow fields
27(4)
Collective Excitations in Superfluid Fermi-Systems with s-Pairing
31(26)
Effective action functional of the superfluid Fermi-gas
31(7)
Bose-spectrum of superfluid Fermi-gas
38(13)
Fermi-gas with Coulomb interaction
51(6)
Sound Propagation in Superfluid 3He and Superconductors
57(8)
Sound propagation in superfluid 3He
57(2)
Sound propagation in conventional superconductors
59(6)
Attenuation in the normal state
59(2)
Attenuation in the superconducting state
61(1)
Attenuation in the superconducting state in a magnetic field
62(1)
Velocity at the superconducting transition
63(2)
Superfluid Phases in 3He
65(18)
Introduction: Fermi-systems with nontrivial pairing
65(2)
Properties of superfluid phases in 3He
67(16)
The Model of 3He
83(20)
The path integral approach
83(14)
Kinetic equation method
97(6)
Collective Excitations in the B-Phase of 3H
103(48)
The quadratic form of action functional
103(6)
The collective mode frequencies
109(5)
Dispersion corrections to the collective mode spectrum
114(9)
Dispersion laws for rsq- and sq-modes
114(6)
Dispersion induced splitting of the rsq- and sq-mode
120(3)
The pair-breaking mode dispersion law
123(7)
Collective mode spectrum calculated by the kinetic equation method
130(3)
Fermi-liquid corrections
133(1)
Textural effects on the squashing modes
134(7)
Coupling of order-parameter collective modes to ultrasound
141(10)
Collective Excitations in the A-Phase of 3He
151(52)
A-phase of 3He
151(1)
The collective mode spectrum in the absence of magnetic fields
152(14)
The latent symmetry, additional Goldstone modes, W-bosons
166(7)
The linear Zeeman effect for clapping- and pair-breaking modes
173(8)
The equations for the collective mode spectrum in an arbitrary magnetic field and at arbitrary collective mode momenta
173(4)
The collective mode spectrum for small magnetic fields and zero collective mode momenta (linear Zeeman effect for clapping and pairbreaking modes)
177(4)
Kinetic equation results on collective modes in A-phase
181(14)
Sound and the order parameter collective modes
181(7)
Orbital waves and sound
188(7)
Textural effects in A-phase
195(8)
Identification of 3He-A by Ultrasound Experiments
203(14)
Introduction
203(1)
Mermin-Star's phase diagram analysis
203(4)
Axial phase
207(9)
Ginsburg-Landau model
211(2)
The second variation of free energy
213(3)
Conclusion
216(1)
Stability of Goldstone Modes
217(24)
Stability of Goldstone-modes and their dispersion laws
217(2)
Stability of Goldstone-modes in the B-phase
219(9)
Stability of Goldstone-modes in the axial A-phase
228(7)
Stability of Goldstone-modes in the planar 2D-phase
235(6)
Influence of Dipole Interaction and Magnetic Field on Collective Excitations
241(20)
The influence of the dipole interaction on collective excitations
241(14)
The influence of the magnetic field on collective excitations
255(3)
Conclusion
258(3)
The Influence of the Electric Field on the Collective Excitations in 3He and 4He
261(24)
The energy spectrum and hydrodynamics of 4He in a strong electric field (macroscopic approach)
261(5)
Superfluid Bose-systems in the electric field (microscopic approach)
266(4)
The effective action functional for the superfluid 3He in the electric field
270(4)
The influence of the electric field on the Bose-spectrum in the B-phase
274(6)
The influence of the electric field on the Bose-spectrum in the A-phase
280(5)
The Order Parameter Distortion and Collective Modes in 3He-B
285(36)
The external perturbations and the order parameter distortions
285(7)
The collective mode spectrum under the order parameter distortion
292(20)
Dipole interaction
295(3)
Magnetic fields
298(1)
Electric fields
299(10)
Superfluid flow
309(2)
Rotational effects (vortices and gyromagnetism)
311(1)
Sound experiments at the absorption edge
312(1)
Subdominant f-wave pairing interactions in superfluid 3He
313(8)
Splitting of the Squashing Mode and the Method of Superfluid Velocity Measurement in 3He-B
321(10)
A doublet splitting of the squashing mode in superfluid 3He-B
321(7)
The method of superfluid velocity measurement in 3He-B
328(3)
Superfluid Phase of 3He-B Near the Boundary
331(14)
Introduction
331(1)
Transverse sound experiments
332(1)
Possible new phases near the boundary
333(7)
Different branches of squashing mode
340(1)
Deformed B-phase
341(2)
Conclusion
343(2)
Collective Excitations in the Planar 2D-Phase of Superfluid 3He
345(10)
The planar 2D-phase of superfluid 3He
345(3)
Collective modes in 3He-2D at zero momenta of excitations
348(7)
Dispersion Induced Splitting of the Collective mode Spectrum in Axial- and Planar-Phases of Superfluid 3He
355(30)
Introduction
356(1)
Axial phase
357(9)
The model of superfluid 3He
359(2)
The equations for the collective mode spectrum in an arbitrary magnetic field and at arbitrary collective mode momenta
361(3)
The dispersion corrections to collective mode spectrum in 3He-A
364(2)
Planar phase
366(16)
Stability of 2D-phase
367(3)
The equations for collective mode spectrum in 3He-2D
370(4)
The equations for collective mode spectrum in 3He-2D with dispersion corrections
374(4)
The collective mode spectrum in 3He-2D with dispersion corrections
378(4)
Conclusion
382(3)
Collective Excitations in the Polar-Phase
385(6)
Calculation of the collective mode spectrum
386(4)
Conclusion
390(1)
Collective Mode Spectrum in Ai-Phase of Superfluid 3He
391(8)
Calculation of the collective mode spectrum
391(7)
Conclusion
398(1)
Superfluidity of Two-Dimensional and One-Dimensional Systems
399(90)
Phase transitions in two-dimensional systems
399(2)
Two-dimensional superfluidity
401(27)
Quantum vortices
428(12)
One-dimensional systems
440(2)
Superfluidity in Fermi films. Singlet pairing
442(4)
Triplet pairing. Thick films
446(9)
Model of 3He-film
455(3)
Superfluid phases of a two-dimensional superfluid 3He
458(10)
Bose-spectrum of the a-phase
468(8)
Bose-spectrum of the b-phase
476(5)
The two-dimensional superfluidity must exist!
481(5)
New possibility for the search of 2D-superfluidity in 3He-films
486(3)
Bose-Spectrum of Superfluid Solutions 3He-4He
489(40)
Superfluidity of 3He, dissolved in 4He
489(1)
The case of s-pairing in 3He. Effective action functional of the 3He-4He solutions
490(8)
Bose-spectrum of the 3He-4He solution
498(5)
The case of p-pairing. The effective action functional of the 3He-4He solution
503(6)
Bose-spectrum of a solution of the type 3He-B-4He
509(9)
Bose-spectrum of a system of the type 3He-A-4He
518(6)
Bose-spectrum of films of the types 3He-a-4He and 3He-b-4He
524(3)
Conclusion
527(2)
Novel Sound Phenomena in Impure Superfluids
529(42)
Introduction
530(2)
Decoupling of first and second sound in pure superfluids
532(2)
Sounds coupling in impure superfluids
534(8)
Superfluids with different impurities, 3He-4He mixtures
534(3)
Sounds coupling in superfluid He in aerogel
537(5)
Slow pressure (density) oscillations, fast temperature (entropy) oscillations
542(1)
Fast mode frequency shift at Tc(Tλ)
542(3)
Difference in nature of first and second sound In impure superfluids
545(2)
Sound conversion phenomena
547(7)
Conservation laws in sound conversion
547(3)
Sound conversion in pure superfluids
550(2)
Sound conversion in 3He-4He mixtures
552(2)
Sound conversion experimens in pure superfluids
554(1)
Some possible new sound experiments in impure superfluids
555(1)
Coupling of two slow modes in superfluid 3He-4He mixture in aerogel
556(6)
Nonlinear hydrodynamic equations for superfluid helium in aerogel
562(3)
Putterman's type equations
565(3)
Conclusion
568(3)
Path Integral Approach to the Theory of Crystals
571(18)
Effective Interaction of Electrons Near the Fermi-Surface
589(10)
The Path Integral Models of p- and d-Pairing for Bulk Superconductors
599(8)
Models of p- and d-pairing
599(2)
p-pairing
601(2)
d-pairing
603(4)
High Temperature Superconductors (HTSC) and Their Physical Properties
607(16)
The discovery of HTSC
607(6)
Physical properties of HTSC
613(10)
Some experimental data
613(10)
Symmetry of Order Parameter in HTSC
623(88)
Introduction
623(9)
Superconductivity and broken symmetry
624(6)
The symmetry group
630(2)
Symmetry classification of HTSC states
632(9)
Square lattice
632(2)
Tetragonal lattice
634(2)
The orthorhombic lattice
636(3)
Electron-hole symmetry
639(2)
Singlet states
641(12)
The gap functions
641(2)
Mixing of states of different irreducible representations
643(7)
Orthorhombicity and twins
650(1)
Multilayer structures
651(2)
Pairing symmetry and pairing interactions
653(15)
Two scenarios for d-wave pairing
654(3)
Tests of the pairing interaction
657(4)
Influence of electron-phonon interaction on dx2-y2-pairing
661(7)
Experimental symmetry probes
668(28)
Josephson effects
669(8)
Magnetic induction of dx2-y2 + idxy order in HTSC
677(2)
Transition splitting, spontaneous strain and magnetism
679(3)
Critical phenomena and Gaussian fluctuations
682(4)
Collective modes
686(4)
Exotic vortices
690(3)
Probes of the gap function
693(2)
Distinction of a scalar from a tensor Order parameter
695(1)
Experimental evidence for dx2-x2 pairing
696(8)
``Clean samples''
696(5)
Impurities
701(3)
Irradiation studies
704(4)
List of abridgements for chapters XXV and XXVI
708(3)
D-Pairing in HTSC
711(10)
Introduction
711(2)
Bulk HTSC under d-pairing
713(8)
How to Distinguish the Mixture of Two d-Wave States from Pure d-Wave State of HTSC
721(20)
The mixture of two d-wave states
721(2)
Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors
723(15)
Model for mixed state
723(4)
Equations for collective modes spectrum in a mixed d-wave state at arbitrary admixture of dxy state
727(5)
Equations for collective modes spectrum in a mixed d-wave state at an equal admixtures of dx2-y2 and dxy states
732(3)
dx2-y2-state of high temperature superconductors with a small admixture of dxy-state
735(3)
Conclusion
738(3)
p-Wave Superconductors
741(14)
Introduction
741(1)
Bulk p-wave superconductivity
741(14)
Two Dimensional p- and d-Wave Superconductivity
755(10)
Two-dimensional models of p- and d-pairing in USC
755(1)
p-pairing
755(5)
Two-dimensional p-wave superconducting states
756(2)
The collective mode spectrum
758(2)
Two-dimensional d-wave superconductivity
760(5)
2D-model of d-pairing in CuO2 planes of HTSC
760(3)
The collective mode spectrum
763(1)
Lattice symmetry and collective mode spectrum
764(1)
Collective Modes in the Heavy-Fermion Superconductors
765(10)
Physical properties of heavy-fermion superconductors
765(2)
Bulk heavy-fermion superconductors under d-pairing
767(5)
Conclusion
772(3)
Other Application of the Theory of Collective Excitations
775(6)
Relativistic analogs of 3He
775(6)
References 781(30)
About the Authors 811