|
|
1 | (3) |
|
1.1 Why consider wave interactions? |
|
|
1 | (1) |
|
1.2 Simplifying assumptions |
|
|
2 | (2) |
|
2 Elements Of General Relativity |
|
|
4 | (7) |
|
|
4 | (1) |
|
2.2 Components of the curvature tensor |
|
|
5 | (2) |
|
|
7 | (3) |
|
2.4 Einstein-Maxwell fields |
|
|
10 | (1) |
|
3 Colliding Impulsive Gravitational Waves |
|
|
11 | (6) |
|
3.1 The approaching waves |
|
|
11 | (2) |
|
3.2 The solution describing the interaction |
|
|
13 | (2) |
|
3.3 The structure of the solution |
|
|
15 | (2) |
|
|
17 | (9) |
|
4.1 The class of pp-waves |
|
|
17 | (1) |
|
4.2 The class of plane waves |
|
|
18 | (3) |
|
|
21 | (1) |
|
|
22 | (4) |
|
5 Geometrical Considerations |
|
|
26 | (8) |
|
5.1 The focusing of congruences |
|
|
26 | (3) |
|
|
29 | (2) |
|
|
31 | (3) |
|
|
34 | (8) |
|
6.1 The coordinate system |
|
|
34 | (2) |
|
6.2 The derivation of the field equations |
|
|
36 | (3) |
|
6.3 The Einstein and Einstein-Maxwell equations |
|
|
39 | (1) |
|
6.4 Integrating the field equations |
|
|
40 | (2) |
|
|
42 | (6) |
|
|
42 | (1) |
|
7.2 Junction conditions for colliding plane waves |
|
|
43 | (5) |
|
|
48 | (15) |
|
|
48 | (2) |
|
8.2 The singularity in region IV |
|
|
50 | (3) |
|
8.3 The Khan--Penrose solution |
|
|
53 | (5) |
|
8.4 The structure of other solutions |
|
|
58 | (5) |
|
9 The Szekeres Class Of Vacuum Solutions |
|
|
63 | (6) |
|
9.1 The solution in region IV |
|
|
63 | (3) |
|
9.2 The approaching waves |
|
|
66 | (1) |
|
9.3 The singularity structure |
|
|
67 | (2) |
|
10 Other Vacuum Solutions With Aligned Polarization |
|
|
69 | (26) |
|
|
69 | (5) |
|
10.2 The non-singular `solution' of Stoyanov |
|
|
74 | (2) |
|
10.3 The solution of Ferrari and Ibanez and Griffiths |
|
|
76 | (3) |
|
10.4 The soliton solution of Ferrari and Ibanez |
|
|
79 | (2) |
|
10.5 The degenerate Ferrari--Ibanez solutions |
|
|
81 | (4) |
|
10.6 An odd order solution |
|
|
85 | (1) |
|
10.7 The second Yurtsever and the Feinstein-Ibanez solutions |
|
|
86 | (4) |
|
10.8 The first Yurtsever solutions |
|
|
90 | (2) |
|
10.9 Further explicit solutions |
|
|
92 | (3) |
|
11 Ernst's Equation For Colliding Gravitational Waves |
|
|
95 | (8) |
|
11.1 A derivation of the Ernst equation |
|
|
95 | (3) |
|
|
98 | (2) |
|
|
100 | (3) |
|
12 Solution-Generating Techniques |
|
|
103 | (15) |
|
|
103 | (2) |
|
12.2 Rotations and Ehlers transformations |
|
|
105 | (3) |
|
12.3 Geroch transformations |
|
|
108 | (2) |
|
12.4 The Neugebauer--Kramer involution |
|
|
110 | (3) |
|
12.5 A combined transformation |
|
|
113 | (1) |
|
|
114 | (4) |
|
13 Vacuum Solutions With Non-Aligned Polarization |
|
|
118 | (13) |
|
13.1 The Nutku--Halil solution |
|
|
118 | (2) |
|
|
120 | (1) |
|
13.3 The Chandrasekhar--Xanthopoulos solution |
|
|
121 | (6) |
|
|
127 | (4) |
|
14 The Initial Value Problem |
|
|
131 | (6) |
|
|
131 | (1) |
|
|
132 | (3) |
|
14.3 The non-colinear case |
|
|
135 | (2) |
|
15 Colliding Electromagnetic Waves: The Bell--Szekeres Solution |
|
|
137 | (9) |
|
15.1 The Bell--Szekeres solution |
|
|
137 | (2) |
|
15.2 The structure of the solution |
|
|
139 | (3) |
|
15.3 Extensions of the solution |
|
|
142 | (1) |
|
15.4 A non-colinear collision |
|
|
143 | (3) |
|
16 Ernst's Equation For Colliding Electromagnetic Waves |
|
|
146 | (10) |
|
|
146 | (5) |
|
16.2 A simple class of solutions |
|
|
151 | (2) |
|
16.3 The Bell-Szekeres solution |
|
|
153 | (3) |
|
17 Colliding Electromagnetic Waves: Exact Solutions |
|
|
156 | (12) |
|
17.1 A technique of Chandrasekhar and Xanthopoulos |
|
|
156 | (2) |
|
17.2 Two particular examples |
|
|
158 | (2) |
|
17.3 Another type D solution |
|
|
160 | (3) |
|
17.4 A technique of Halilsoy |
|
|
163 | (2) |
|
|
165 | (3) |
|
18 Colliding Electromagnetic Waves: Diagonal Solutions |
|
|
168 | (9) |
|
18.1 The generation technique of Panov |
|
|
168 | (1) |
|
18.2 An alternative approach |
|
|
169 | (4) |
|
18.3 Electromagnetic Gowdy cosmologies |
|
|
173 | (3) |
|
|
176 | (1) |
|
19 Electromagnetic Waves Colliding With Gravitational Waves |
|
|
177 | (7) |
|
|
177 | (1) |
|
19.2 General initial data |
|
|
178 | (2) |
|
19.3 A general class of solutions |
|
|
180 | (4) |
|
|
184 | (17) |
|
|
184 | (2) |
|
20.2 Perfect fluid solutions |
|
|
186 | (3) |
|
20.3 Null fluids and the uniqueness problem |
|
|
189 | (3) |
|
20.4 Plane shells of matter |
|
|
192 | (2) |
|
|
194 | (5) |
|
|
199 | (2) |
|
|
201 | (7) |
|
21.1 Other wave interactions |
|
|
201 | (1) |
|
21.2 Collisions in non-flat backgrounds |
|
|
202 | (1) |
|
|
203 | (2) |
|
21.4 Alternative gravitational theories |
|
|
205 | (1) |
|
21.5 Numerical techniques |
|
|
206 | (2) |
|
22 Conclusions And Prospects |
|
|
208 | (6) |
|
|
208 | (2) |
|
22.2 Prospects for further work |
|
|
210 | (4) |
Appendix: Coordinate Systems |
|
214 | (2) |
References |
|
216 | (12) |
Index |
|
228 | (5) |
Postscript |
|
233 | |