Atnaujinkite slapukų nuostatas

El. knyga: Color-Induced Graph Colorings

  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 10-Aug-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319203942
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Mathematics
  • Išleidimo metai: 10-Aug-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319203942
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A comprehensive treatment of color-induced graph colorings is presented in this book, emphasizing vertex colorings induced by edge colorings. The coloring concepts described in this book depend not only on the property required of the initial edge coloring and the kind of objects serving as colors, but also on the property demanded of the vertex coloring produced. For each edge coloring introduced, background for the concept is provided, followed by a presentation of results and open questions dealing with this topic. While the edge colorings discussed can be either proper or unrestricted, the resulting vertex colorings are either proper colorings or rainbow colorings. This gives rise to a discussion of irregular colorings, strong colorings, modular colorings, edge-graceful colorings, twin edge colorings and binomial colorings. Since many of the concepts described in this book are relatively recent, the audience for this book is primarily mathematicians interested in learning some new areas of graph colorings as well as researchers and graduate students in the mathematics community, especially the graph theory community.

Recenzijos

The book gives a detailed survey on concepts of vertex-colorings which are induced by edge-colorings. It is well written and provides a good introduction and survey on color-induced graph colorings for researchers and graduate students in the mathematics community, especially the graph theory community. (Eckhard Steffen, zbMATH, Vol. 1365.05006, 2017)

1 Introduction
1(4)
1.1 The Origin of Edge Colorings
1(1)
1.2 Proper Edge Colorings
2(1)
1.3 Proper Vertex Colorings
3(2)
2 The Irregularity Strength of a Graph
5(26)
2.1 Sum-Defined Vertex Colorings: Irregularity Strength
5(3)
2.2 On the Irregularity Strength of Regular Graphs
8(9)
2.3 The Irregularity Strength of Paths and Cycles
17(5)
2.4 Additional Bounds for the Irregularity Strength of a Graph
22(9)
3 Modular Sum-Defined Irregular Colorings
31(12)
3.1 Graceful Graphs
32(1)
3.2 Modular Edge-Graceful Graphs
33(4)
3.3 Non-modular Edge-Graceful Graphs
37(3)
3.4 Nowhere-Zero Modular Edge-Graceful Graphs
40(3)
4 Set-Defined Irregular Colorings
43(8)
4.1 The Set Irregular Chromatic Index
43(2)
4.2 Complete Graphs and Hypercubes
45(4)
4.3 Complete Bipartite Graphs
49(2)
5 Multiset-Defined Irregular Colorings
51(10)
5.1 The Multiset Irregular Chromatic Index
51(3)
5.2 Regular Graphs
54(1)
5.3 Complete Bipartite Graphs
55(1)
5.4 Trees
56(2)
5.5 Max-Min Value Problems
58(3)
6 Sum-Defined Neighbor-Distinguishing Colorings
61(8)
6.1 The Sum Distinguishing Index
61(2)
6.2 The 1-2-3 Conjecture
63(2)
6.3 The Multiset Distinguishing Index
65(4)
7 Modular Sum-Defined Neighbor-Distinguishing Colorings
69(12)
7.1 Modular Chromatic Index
69(2)
7.2 Bipartite Graphs
71(6)
7.3 Modular Chromatic Index and Chromatic Number
77(4)
8 Strong Edge Colorings of Graphs
81(14)
8.1 The Strong Chromatic Index
81(4)
8.2 Binomial Colorings of Graphs
85(6)
8.3 The Neighbor Strong Chromatic Index
91(4)
9 Sum-Defined Chromatic Indices
95(18)
9.1 The Irregular-Sum Chromatic Index
95(3)
9.2 The Proper-Sum Chromatic Index
98(4)
9.3 The Twin Chromatic Index
102(4)
9.4 Trees
106(7)
References 113(4)
Index 117