Atnaujinkite slapukų nuostatas

El. knyga: Combinatorial Nullstellensatz: With Applications to Graph Colouring

  • Formatas: 150 pages
  • Išleidimo metai: 31-May-2021
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781000426694
Kitos knygos pagal šią temą:
  • Formatas: 150 pages
  • Išleidimo metai: 31-May-2021
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781000426694
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients:











Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph.





Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable.





Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable.

It is suited as a reference book for a graduate course in mathematics.
Preface ix
Authors xiii
Acknowledgements xv
1 Some Definitions and Notations
1(6)
2 Combinatorial Nullstellensatz
7(10)
2.1 Introduction
7(2)
2.2 An application of CNS to additive number theory
9(2)
2.3 Application of CNS to geometry
11(1)
2.4 CNS and a subgraph problem
12(1)
2.5 0--1 vectors in a hyperplane
13(4)
3 Alon--Tarsi Theorem and Its Applications
17(52)
3.1 Alon--Tarsi theorem
17(9)
3.2 Bipartite graphs and acyclic orientations
26(1)
3.3 The Cartesian product of a path and an odd cycle
27(3)
3.4 A solution to a problem of Erdos
30(5)
3.5 Bound for AT(G) in terms of degree
35(2)
3.6 Planar graphs
37(4)
3.7 Planar graph minus a matching
41(6)
3.8 Discharging method
47(9)
3.9 Hypergraph colouring
56(5)
3.10 Paintability of graphs
61(8)
4 Generalizations of Cns and Applications
69(38)
4.1 Number of non-zero points
69(2)
4.2 Multisets
71(4)
4.3 Coefficient of a highest degree monomial
75(2)
4.4 Calculation of Ns(a)
77(3)
4.5 Alon--Tarsi number of K2*n and cycle powers
80(4)
4.6 Alon--Tarsi numbers of toroidal grids
84(5)
4.7 List colouring of line graphs
89(3)
4.8 r-regular planar graphs
92(2)
4.9 Complete graphs Kp+1 for odd prime p
94(9)
4.10 Jaeger's conjecture
103(4)
5 Permanent and Vertex-Edge Weighting
107(20)
5.1 Permanent as the coefficient
107(3)
5.2 Edge weighting and total weighting
110(3)
5.3 Polynomial associated to total weighting
113(3)
5.4 Permanent Index
116(3)
5.5 Trees with an even number of edges
119(3)
5.6 Complete graphs
122(3)
5.7 Every graph is (2,3)-choosable
125(2)
Bibliography 127(6)
Index 133
Xuding Zhu is currently a Professor of Mathematics, director of the Center for Discrete Mathematics at Zhejiang Normal University, China. His fields of interests are: Combinatorics and Graph Colouring. He published more than 260 research papers and served on the editorial board of SIAM Journal on Discrete Mathematics, Journal of Graph Theory, European Journal of Combinatorics, Electronic Journal of Combinatorics, Discrete Mathematics, Contribution to Discrete Mathematics, Discussion. Math. Graph Theory, Bulletin of Academia Sinica and Taiwanese Journal of Mathematics.

R. Balakrishnan is currently an Adjunct Professor of Mathematics at Bharathidasan University, Triuchirappalli, India. His fields of interests are: Algebraic Combinatorics and Graph Colouring. He is an author of three other books, one in Graph Theory and the other two in Discrete Mathematics. He is also one of the founders of the Ramanujan Mathematical Society and the Academy of Discrete Mathematics and Applications and currently an Editor-in-Chief of the Indian Journal of Discrete Mathematics.