Atnaujinkite slapukų nuostatas

El. knyga: Combinatorial Stochastic Processes: Ecole d'Ete de Probabilites de Saint-Flour XXXII - 2002

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 1875
  • Išleidimo metai: 21-Jul-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540342663
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 1875
  • Išleidimo metai: 21-Jul-2006
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783540342663
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Three series of lectures were given at the 32nd Probability Summer School in Saint-Flour (July 724, 2002), by the Professors Pitman, Tsirelson and Werner. ThecoursesofProfessorsTsirelson(Scalinglimit,noise,stability)andWerner (Random planar curves and Schramm-Loewner evolutions) have been p- lished in a previous issue ofLectures Notes in Mathematics (volume 1840). This volume contains the course Combinatorial stochastic processes of Professor Pitman. We cordially thank the author for his performance in Saint-Flour and for these notes. 76 participants have attended this school. 33 of them have given a short lecture. The lists of participants and of short lectures are enclosed at the end of the volume. The Saint-Flour Probability Summer School was founded in 1971. Here are the references of Springer volumes which have been published prior to this one. All numbers refer to theLecture Notes in Mathematics series,except S-50 which refers to volume 50 of the Lecture Notes in Statistics series. 1971: vol 307 1980: vol 929 1990: vol 1527 1998: vol 1738 1973: vol 390 1981: vol 976 1991: vol 1541 1999: vol 1781 1974: vol 480 1982: vol 1097 1992: vol 1581 2000: vol 1816 1975: vol 539 1983: vol 1117 1993: vol 1608 2001: vol 1837 & 1851 1976: vol 598 1984: vol 1180 1994: vol 1648 2002: vol 1840 1977: vol 678 1985/86/87: vol 1362 & S-50 1995: vol 1690 2003: vol 1869 1978: vol 774 1988: vol 1427 1996: vol 1665 1979: vol 876 1989: vol 1464 1997: vol 1717

Recenzijos

From the reviews:









"The intertwining of many aspects of combinatorics and probability is treated in the book under review. I think this is an important book for a variety of mathematicians. Moreover, the good exercises provided in each section and a good bibliography make the book suitable as a textbook for topics courses and as a reference for particular topics in various standard courses." (Bert Fristedt, Mathematical Reviews, Issue 2008 c)

0 Preliminaries 1(206)
0.0 Preface
1(1)
0.1 Introduction
2(1)
0.2 Brownian motion and related processes
3(6)
0.3 Subordinators
9(4)
1 Bell polynomials and Gibbs partitions
13(24)
1.1 Notation
14(1)
1.2 Partitions and compositions
14(6)
1.3 Moments and cumulants
20(3)
1.4 Random sums
23(1)
1.5 Gibbs partitions
24(13)
2 Exchangeable random partitions
37(18)
2.1 Finite partitions
38(4)
2.2 Infinite partitions
42(4)
2.3 Structural distributions
46(2)
2.4 Convergence
48(2)
2.5 Limits of Gibbs partitions
50(5)
3 Sequential constructions of random partitions
55(22)
3.1 The Chinese restaurant process
56(4)
3.2 The two-parameter model
60(7)
3.3 Asymptotics
67(5)
3.4 A branching process construction
72(5)
4 Poisson constructions of random partitions
77(20)
4.1 Size-biased sampling
78(3)
4.2 Poisson representation of the two-parameter model
81(4)
4.3 Representation of infinite Gibbs partitions
85(2)
4.4 Lengths of stable excursions
87(3)
4.5 Brownian excursions
90(7)
5 Coagulation and fragmentation processes
97(24)
5.1 Coalescents
98(8)
5.2 Fragmentations
106(3)
5.3 Representations of infinite partitions
109(3)
5.4 Coagulation and subordination
112(4)
5.5 Coagulation - fragmentation duality
116(5)
6 Random walks and random forests
121(22)
6.1 Cyclic shifts and Lagrange inversion
122(3)
6.2 Galton-Watson forests
125(4)
6.3 Brownian asymptotics for conditioned Galton-Watson trees
129(6)
6.4 Critical random graphs
135(8)
7 The Brownian forest
143(34)
7.1 Plane trees with edge-lengths
144(2)
7.2 Binary Galton-Watson trees
146(3)
7.3 Trees in continuous paths
149(3)
7.4 Brownian trees and excursions
152(10)
7.5 Plane forests with edge-lengths
162(3)
7.6 Sampling at downcrossing times
165(2)
7.7 Sampling at Poisson times
167(5)
7.8 Path decompositions
172(2)
7.9 Further developments
174(3)
8 Brownian local times
177(16)
8.1 Stopping at an inverse local time
177(2)
8.2 Squares of Bessel processes
179(3)
8.3 Stopping at fixed times
182(3)
8.4 Time-changed local time processes
185(2)
8.5 Branching process approximations
187(6)
9 Brownian bridge asymptotics
193(14)
9.1 Basins and trees
194(4)
9.2 Mapping walks
198(1)
9.3 Brownian asymptotics
199(4)
9.4 The diameter
203(2)
9.5 The height profile
205(1)
9.6 Non-uniform random mappings
206(1)
10 Random forests and the additive coalescent 207(16)
10.1 Random p-forests and Cayley's multinomial expansion
208(2)
10.2 The additive coalescent
210(3)
10.3 The standard additive coalescent
213(2)
10.4 Poisson cutting of the Brownian tree
215(8)
Bibliography 223(26)
Index 249(4)
List of participants 253(2)
List of short lectures 255


Jim Pitman is a Professor of Mathematics and Statistics at the University of California, Berkeley, where he has been employed since 1978.  He attended the Australian National University and The University of Sheffield.