|
|
1 | (4) |
|
2 Multiplier Hopf Algebras |
|
|
5 | (20) |
|
|
5 | (3) |
|
2.2 Multiplier Hopf Algebras |
|
|
8 | (4) |
|
|
8 | (1) |
|
2.2.2 Algebraic Multiplier Algebras |
|
|
9 | (1) |
|
2.2.3 Multiplier Hopf Algebras |
|
|
10 | (2) |
|
|
12 | (6) |
|
2.3.1 The Definition of Integrals |
|
|
13 | (1) |
|
2.3.2 The Dual Multiplier Hopf Algebra |
|
|
14 | (4) |
|
2.4 The Drinfeld Double: Algebraic Level |
|
|
18 | (7) |
|
3 Quantized Universal Enveloping Algebras |
|
|
25 | (170) |
|
|
25 | (2) |
|
3.2 The Definition of Uq(g) |
|
|
27 | (28) |
|
3.2.1 Semisimple Lie Algebras |
|
|
27 | (2) |
|
3.2.2 The Quantized Universal Enveloping Algebra Without Serre Relations |
|
|
29 | (6) |
|
|
35 | (4) |
|
3.2.4 The Quantized Universal Enveloping Algebra |
|
|
39 | (4) |
|
3.2.5 The Restricted Integral Form |
|
|
43 | (12) |
|
|
55 | (5) |
|
3.3.1 The Parameter Space h*q |
|
|
56 | (2) |
|
3.3.2 Weight Modules and Highest Weight Modules |
|
|
58 | (1) |
|
3.3.3 The Definition of Verma Modules |
|
|
59 | (1) |
|
|
60 | (1) |
|
3.5 Finite Dimensional Representations of Uq(sl(2, K)) |
|
|
61 | (4) |
|
3.6 Finite Dimensional Representations of Uq(g) |
|
|
65 | (4) |
|
3.6.1 Rank-One Quantum Subgroups |
|
|
65 | (1) |
|
3.6.2 Finite Dimensional Modules |
|
|
66 | (3) |
|
3.7 Braid Group Action and PBW Basis |
|
|
69 | (41) |
|
3.7.1 The Case of sl(2, K) |
|
|
70 | (5) |
|
3.7.2 The Case of General g |
|
|
75 | (11) |
|
3.7.3 The Braid Group Action on Uq(g) |
|
|
86 | (8) |
|
3.7.4 The Poincare-Birkhoff-Witt Theorem |
|
|
94 | (14) |
|
3.7.5 The Integral PBW-Basis |
|
|
108 | (2) |
|
3.8 The Drinfeld Pairing and the Quantum Killing Form |
|
|
110 | (27) |
|
|
110 | (5) |
|
3.8.2 The Quantum Killing Form |
|
|
115 | (4) |
|
3.8.3 Computation of the Drinfeld Pairing |
|
|
119 | (18) |
|
3.8.4 Nondegeneracy of the Drinfeld Pairing |
|
|
137 | (1) |
|
3.9 The Quantum Casimir Element and Simple Modules |
|
|
137 | (5) |
|
3.9.1 Complete Reducibility |
|
|
141 | (1) |
|
3.10 Quantized Algebras of Functions |
|
|
142 | (3) |
|
3.11 The Universal R-Matrix |
|
|
145 | (9) |
|
3.11.1 Universal R-Matrices |
|
|
145 | (2) |
|
3.11.2 The R-Matrix for Uq(g) |
|
|
147 | (7) |
|
3.12 The Locally Finite Part of Uq(g) |
|
|
154 | (6) |
|
3.13 The Centre of Uq(g) and the Harish-Chandra Homomorphism |
|
|
160 | (8) |
|
|
168 | (10) |
|
3.14.1 Noetherian Algebras |
|
|
168 | (4) |
|
3.14.2 Noetherianity of Uq(q) |
|
|
172 | (1) |
|
3.14.3 Noetherianity of (Gq) |
|
|
173 | (2) |
|
3.14.4 Noetherianity of FUq(s) |
|
|
175 | (3) |
|
|
178 | (7) |
|
|
179 | (2) |
|
|
181 | (4) |
|
3.16 Separation of Variables |
|
|
185 | (10) |
|
|
186 | (2) |
|
3.16.2 Further Preliminaries |
|
|
188 | (3) |
|
3.16.3 Separation of Variables |
|
|
191 | (4) |
|
4 Complex Semisimple Quantum Groups |
|
|
195 | (40) |
|
4.1 Locally Compact Quantum Groups |
|
|
195 | (4) |
|
|
195 | (1) |
|
4.1.2 The Definition of Locally Compact Quantum Groups |
|
|
196 | (3) |
|
4.2 Algebraic Quantum Groups |
|
|
199 | (13) |
|
4.2.1 The Definition of Algebraic Quantum Groups |
|
|
199 | (1) |
|
4.2.2 Algebraic Quantum Groups on the Hilbert Space Level |
|
|
200 | (4) |
|
4.2.3 Compact Quantum Groups |
|
|
204 | (2) |
|
4.2.4 The Drinfeld Double of Algebraic Quantum Groups |
|
|
206 | (6) |
|
4.3 Compact Semisimple Quantum Groups |
|
|
212 | (5) |
|
4.4 Complex Semisimple Quantum Groups |
|
|
217 | (6) |
|
4.4.1 The Definition of Complex Quantum Groups |
|
|
217 | (4) |
|
4.4.2 The Connected Component of the Identity |
|
|
221 | (2) |
|
|
223 | (4) |
|
4.6 The Quantized Universal Enveloping Algebra of a Complex Group |
|
|
227 | (5) |
|
4.7 Parabolic Quantum Subgroups |
|
|
232 | (3) |
|
|
235 | (52) |
|
5.1 The Definition of Category |
|
|
235 | (9) |
|
5.1.1 Category Is Artinian |
|
|
236 | (3) |
|
|
239 | (1) |
|
5.1.3 Dominant and Antidominant Weights |
|
|
240 | (4) |
|
5.2 Submodules of Verma Modules |
|
|
244 | (5) |
|
5.3 The Shapovalov Determinant |
|
|
249 | (6) |
|
5.4 Jantzen Filtration and the BGG Theorem |
|
|
255 | (5) |
|
|
260 | (23) |
|
5.5.1 The Spaces F Hom(M, N) |
|
|
260 | (3) |
|
5.5.2 Conditions for F Hom(M, N) = 0 |
|
|
263 | (3) |
|
5.5.3 Multiplicities in F Hom(M, N) |
|
|
266 | (3) |
|
5.5.4 Hilbert-Poincare Series for the Locally Finite Part of Uq(g) |
|
|
269 | (7) |
|
5.5.5 The Quantum PRV Determinant |
|
|
276 | (7) |
|
5.6 Annihilators of Verma Modules |
|
|
283 | (4) |
|
6 Representation Theory of Complex Semisimple Quantum Groups |
|
|
287 | (70) |
|
6.1 Verma Modules for URq(g) |
|
|
288 | (6) |
|
6.1.1 Characters of URq(b) |
|
|
288 | (1) |
|
6.1.2 Verma Modules for URq(g) |
|
|
289 | (5) |
|
6.2 Representations of Gq |
|
|
294 | (3) |
|
6.2.1 Harish-Chandra Modules |
|
|
294 | (1) |
|
6.2.2 Unitary Gq-Representations |
|
|
295 | (2) |
|
6.3 Action of URq(g) on Kq-Types |
|
|
297 | (4) |
|
6.4 Principal Series Representations |
|
|
301 | (13) |
|
6.4.1 The Definition of Principal Series Representations |
|
|
301 | (2) |
|
6.4.2 Compact Versus Noncompact Pictures |
|
|
303 | (3) |
|
6.4.3 The Action of the Centre on the Principal Series |
|
|
306 | (1) |
|
6.4.4 Duality for Principal Series Modules |
|
|
307 | (2) |
|
6.4.5 Relation Between Principal Series Modules and Verma Modules |
|
|
309 | (5) |
|
6.5 An Equivalence of Categories |
|
|
314 | (10) |
|
6.6 Irreducible Harish-Chandra Modules |
|
|
324 | (7) |
|
6.7 The Principal Series for SLq (2, C) |
|
|
331 | (4) |
|
6.8 Intertwining Operators in Higher Rank |
|
|
335 | (15) |
|
6.8.1 Intertwiners in the Compact Picture |
|
|
335 | (2) |
|
6.8.2 Intertwiners Associated to Simple Roots |
|
|
337 | (5) |
|
6.8.3 Explicit Formulas for Intertwiners |
|
|
342 | (8) |
|
6.9 Submodules and Quotient Modules of the Principal Series |
|
|
350 | (3) |
|
6.10 Unitary Representations |
|
|
353 | (4) |
List of Symbols and Conventions |
|
357 | (14) |
References |
|
371 | |