Atnaujinkite slapukų nuostatas

El. knyga: Composites And Metamaterials

(Univ Of Wisconsin-madison, Usa)
  • Formatas: 280 pages
  • Išleidimo metai: 22-Jun-2020
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811216381
Kitos knygos pagal šią temą:
  • Formatas: 280 pages
  • Išleidimo metai: 22-Jun-2020
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811216381
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is an excellent primer for students to learn about physical properties, particularly mechanical properties of heterogeneous and multiphase materials and the cultivation of physical insight. Written by a prominent author who pioneered many of the concepts, this book provides a comprehensive coverage of current topics in new heterogenous materials. Topics covered include: •Principles of the mechanics of solid multiphase systems. •Role of heterogeneity and anisotropy in determining physical properties including elastic, dielectric, and piezoelectric properties. •Coupled fields; smart materials including piezoelectric materials and thermal actuators. •Applications in lightweight structures, ultra-strong materials, materials for protection of the body, and materials for the replacement of human tissues. •Materials with fibrous, lamellar, particulate, and cellular structures. •Lattice metamaterials. Extreme and unusual physical properties. •Heterogeneous materials of biological origin. •Metamaterials and biomimetic and bio-inspired materials.

Preface v
1 Introduction
1(8)
1.1 Heterogeneous materials
1(3)
1.1.1 Overview
1(1)
1.1.2 Classification and terminology
2(1)
1.1.3 Assumptions about the material
3(1)
1.1.4 Materials vs. structures
4(1)
1.2 Outline
4(1)
1.3 Role of density
5(4)
1.3.1 Modulus and density
6(1)
1.3.2 Strength and density
7(1)
1.3.3 Soft materials
8(1)
2 Structures, properties, bounds
9(28)
2.1 Introduction
9(1)
2.2 Bounds on properties
10(6)
2.2.1 Bounds on elastic constants of a homogeneous solid
10(2)
2.2.2 Bounds on heat capacity of a homogeneous solid
12(1)
2.2.3 Bounds on composite elastic properties
13(2)
2.2.4 Bounds on composite dielectric constant
15(1)
2.3 Attaining the bounds on properties
16(7)
2.3.1 Voigt composite
16(1)
2.3.2 Reuss composite
17(1)
2.3.3 Laminates: dielectric constant
18(1)
2.3.4 Laminates: structural hierarchy
19(2)
2.3.5 Attaining the Hashin-Shtrikman bounds: spheres
21(1)
2.3.6 Attaining the Hashin-Shtrikman bounds: laminates
22(1)
2.4 Inclusion shape: dilute concentration
23(1)
2.4.1 Spherical inclusions
23(1)
2.4.2 Fiber inclusions
23(1)
2.4.3 Platelet inclusions
24(1)
2.5 Exceeding bounds
24(7)
2.5.1 Negative structural stiffness and extreme damping
24(2)
2.5.2 Extreme nonlinear energy dissipation
26(1)
2.5.3 Phase transformations
26(2)
2.5.4 Negative and extreme moduli: stored energy
28(2)
2.5.5 Negative and extreme moduli: energy flux
30(1)
2.5.6 Negative heat capacity
30(1)
2.5.7 Negative capacitance
30(1)
2.6 Summary
31(6)
3 Symmetry and anisotropy
37(22)
3.1 Introduction and Rationale
37(1)
3.2 Tensors
37(1)
3.3 Elastic properties
38(13)
3.3.1 Hooke*s law
38(1)
3.3.2 Reduced notation: matrix form
39(1)
3.3.3 Symmetry classes
40(1)
3.3.4 Quasicrystals
41(1)
3.3.5 Modulus matrices and symmetry
41(2)
3.3.6 Isotropy
43(3)
3.3.7 Physical interpretation: elastic modulus
46(2)
3.3.8 Physical interpretation: elastic compliance
48(1)
3.3.9 Physical interpretation: experiment
49(1)
3.3.10 How to show the effect of symmetry
50(1)
3.3.11 Neumann's principle
51(1)
3.4 Stress concentration: anisotropy
51(1)
3.5 Chirality
52(1)
3.6 Dielectric and optical properties
53(1)
3.7 Materials, symmetry and structure
54(2)
3.7.1 Examples of materials
54(1)
3.7.2 Poisson's ratio in materials with structure
55(1)
3.7.3 Quasicrystal elasticity
56(1)
3.8 Summary
56(3)
4 Coupled fields
59(36)
4.1 Introduction: piezoelectricity, thermoelasticity
59(2)
4.2 Piezoelectric properties
61(8)
4.2.1 Piezoelectric properties and symmetry
61(1)
4.2.2 Piezoelectric materials
62(4)
4.2.3 Strongly piezoelectric materials
66(1)
4.2.4 Lead free piezoelectric materials
67(1)
4.2.5 Experimental piezoelectric measurement
67(1)
4.2.6 Electrostriction
68(1)
4.2.7 Pyroelectric materials
68(1)
4.2.8 Applications of piezoelectric and pyroelectric solids
69(1)
4.3 Thermal expansion
69(5)
4.3.1 Thermoelasticity, symmetry, causes
69(1)
4.3.2 Thermal expansion anisotropy
70(1)
4.3.3 Small or negative thermal expansion
71(1)
4.3.4 Composite thermal expansion bounds
72(1)
4.3.5 Applications and thermal expansion
72(1)
4.3.6 Piezocaloric and related effects
73(1)
4.4 Fluid-solid composites
74(4)
4.4.1 Constitutive equations
74(1)
4.4.2 Experimental determination of constants
75(1)
4.4.3 Applications: geology and geological engineering
76(1)
4.4.4 Foams
76(1)
4.4.5 Streaming potentials
76(1)
4.4.6 Vascular materials
77(1)
4.5 Hall effect
78(1)
4.6 Reciprocity
79(1)
4.6.1 Non-reciprocal and extreme materials
80(1)
4.7 Slow and fast processes
80(4)
4.7.1 Overview
80(1)
4.7.2 Isothermal and adiabatic moduli
81(1)
4.7.3 Short-/open-circuit moduli
82(1)
4.7.4 Fluid-solid composites
83(1)
4.8 Artificial muscles
84(1)
4.9 Artificial tentacles
85(1)
4.10 Energy harvesting
86(1)
4.11 Other coupled fields
87(1)
4.12 Summary
87(8)
5 Particles, fibers, platelets
95(32)
5.1 Introduction: structure
95(1)
5.2 Particulate polymer matrix solids
96(5)
5.2.1 Dental composites
96(2)
5.2.2 Asphalt
98(1)
5.2.3 Toughened polymers
99(1)
5.2.4 Filled polymers; tire rubber; nano-fillers
100(1)
5.2.5 Self healing polymers
101(1)
5.3 Fibrous polymer matrix solids
101(9)
5.3.1 Why fibers?
101(1)
5.3.2 Unidirectional fibrous composites
102(1)
5.3.3 Laminates
103(4)
5.3.4 Nano-tubes as fibers
107(2)
5.3.5 Effects of moisture
109(1)
5.3.6 Damage
109(1)
5.3.7 Making fibrous composites
109(1)
5.4 Platelet reinforcement
110(1)
5.5 Metal matrix composites
111(1)
5.5.1 Particulate metal matrix composite stiffness and strength
111(1)
5.5.2 Nano-size particle inclusions in metal
112(1)
5.5.3 Fiber inclusions in metal
112(1)
5.6 Composites with renewable constituents
112(1)
5.7 Thermoelastic composites
113(3)
5.7.1 Thermal expansion, Voigt
113(1)
5.7.2 Unidirectional composites: thermal expansion
114(1)
5.7.3 Thermal benders
114(2)
5.8 Piezoelectric composites
116(4)
5.8.1 Piezoelectric composite structure and rationale
116(2)
5.8.2 Piezoelectric Voigt composite
118(1)
5.8.3 Piezoelectric benders
119(1)
5.8.4 Piezoelectric composite uses and fabrication
119(1)
5.9 In situ composites
120(1)
5.10 Summary
121(6)
6 Cellular solids and lattices
127(56)
6.1 Introduction
127(1)
6.2 Tessellations
127(2)
6.3 Honeycomb
129(8)
6.3.1 Honeycomb modulus
131(2)
6.3.2 Honeycomb Poisson's ratio
133(1)
6.3.3 Honeycomb strength
134(1)
6.3.4 Square cell honeycombs
135(1)
6.3.5 Hierarchical solids: honeycombs
136(1)
6.3.6 Making honeycomb
137(1)
6.4 Foams
137(7)
6.4.1 Foam elastic modulus
138(2)
6.4.2 Poisson's ratio of foams
140(1)
6.4.3 Nonlinearity and strength of foams
140(2)
6.4.4 Toughness of foams
142(1)
6.4.5 Dense foams and syntactic foams
142(1)
6.4.6 Making foams
143(1)
6.5 Lattices
144(12)
6.5.1 Truss lattices: ribs
144(3)
6.5.2 Continuous rib lattices
147(1)
6.5.3 Lattice property bounds
148(2)
6.5.4 Plate lattices
150(1)
6.5.5 Surface lattices
151(2)
6.5.6 Hierarchical lattices
153(2)
6.5.7 Making lattices
155(1)
6.6 Poisson's ratio tuning
156(8)
6.6.1 Poisson's ratio in anisotropic materials
156(1)
6.6.2 Poisson's tuning ratio in foams: negative or extreme
157(2)
6.6.3 Poisson's ratio tuning in hinged structures: negative or extreme
159(2)
6.6.4 Poisson's ratio tuning in lattices: negative or extreme
161(3)
6.7 Tuning coupled fields
164(3)
6.7.1 Tuning thermal expansion: negative or extreme
164(2)
6.7.2 Piezoelectric lattices
166(1)
6.7.3 Tuning the Hall effect
167(1)
6.8 Control of waves
167(4)
6.8.1 Role of resonance
167(1)
6.8.2 Tuning refraction of waves, Negative index
168(2)
6.8.3 Electromagnetic lattices; cloaking
170(1)
6.8.4 Acoustic lattices; cloaking
170(1)
6.9 Applications of cellular solids
171(2)
6.9.1 Applications of foam and honeycomb
171(1)
6.9.2 Applications of lattices
172(1)
6.10 Summary
173(10)
7 Biological material structural hierarchy
183(18)
7.1 Introduction
183(1)
7.2 Bone and teeth
183(8)
7.2.1 Compact bone: stiffness and strength
184(4)
7.2.2 Compact bone: piezoelectricity
188(1)
7.2.3 Compact bone: adaptation
188(1)
7.2.4 Compact bone: stress concentration
189(1)
7.2.5 Spongy bone
189(2)
7.2.6 Teeth
191(1)
7.3 Ligaments and tendons
191(3)
7.4 Wood and other plant tissue
194(3)
7.4.1 Wood structure, stiffness and strength
194(3)
7.4.2 Wood piezoelectricity
197(1)
7.5 Summary
197(4)
8 Size of heterogeneity
201(22)
8.1 Introduction
201(1)
8.2 Stress concentrations
201(2)
8.2.1 Experiment
201(1)
8.2.2 Analysis: ad hoc criteria
202(1)
8.2.3 Analysis: generalized elasticity
203(1)
8.3 Size effects
203(6)
8.3.1 Size effects: structural example
203(2)
8.3.2 Size effects: continuum view
205(1)
8.3.3 Size effects: experiment
205(4)
8.4 Generalized continuum elasticity
209(6)
8.4.1 Cosserat theory
209(2)
8.4.2 Stress and strain fields: effect of microstructure
211(1)
8.4.3 Physical causes
212(1)
8.4.4 Homogenization analyses
212(1)
8.4.5 Hinged structures
213(1)
8.4.6 Chirality in elasticity
213(1)
8.4.7 Other generalized continua
214(1)
8.5 Flexo-electricity: gradient piezoelectricity
215(1)
8.6 Surface and free edge effects
216(1)
8.7 Summary
216(7)
9 Viscoelastic composites
223(20)
9.1 Viscoelastic properties: introduction
223(1)
9.2 Viscoelastic functions
223(4)
9.2.1 Creep
223(1)
9.2.2 Relaxation
224(1)
9.2.3 Response to sinusoidal input
225(1)
9.2.4 Viscoelasticity of typical materials
226(1)
9.3 Viscoelasticity of composites
227(11)
9.3.1 Viscoelasticity of Voigt laminates
227(1)
9.3.2 Stiffness-damping maps of extremal composites
228(2)
9.3.3 Stiffness-damping map: inclusion shape
230(2)
9.3.4 Bounds on viscoelastic properties
232(1)
9.3.5 Waves in composites
232(1)
9.3.6 Negative damping: acoustic amplification
233(1)
9.3.7 Extreme viscoelastic composites: inclusion shape
233(1)
9.3.8 Extreme viscoelastic composites: stored energy
234(1)
9.3.9 Viscoelasticity of fibrous composites
234(1)
9.3.10 Effect of temperature
235(1)
9.3.11 Poisson's ratio of viscoelastic materials
236(1)
9.3.12 Viscoelasticity of cellular solids
236(1)
9.3.13 Viscoelasticity of bone
237(1)
9.3.14 Viscoelasticity of tendon and ligament
237(1)
9.3.15 Viscoelastic damping of metal matrix composites
237(1)
9.4 Summary
238(5)
A Appendix
243(14)
A.1 Solved Problems
243(9)
A.1.1 Transverse, fibrous
243(1)
A.1.2 Physical meaning of C1111 in applications
243(1)
A.1.3 Adiabatic and isothermal compliance
244(1)
A.1.4 Foam stiffness vs. density
245(1)
A.1.5 Steel foam and solid polymer
245(1)
A.1.6 Cardboard honeycomb strength
245(1)
A.1.7 Poisson's ratio of honeycomb
246(1)
A.1.8 Particle inclusion concentration
246(1)
A.1.9 Multiple particle sizes
247(1)
A.1.10 Spongy bone modulus
247(1)
A.1.11 Sneaker sole design
248(1)
A.1.12 Cubic lattice
248(1)
A.1.13 Lattice with tubular ribs
249(1)
A.1.14 Motion from piezoelectric disk
250(1)
A.1.15 Voltage from piezoelectric disk
250(1)
A.1.16 Piezoelectric bender
251(1)
A.1.17 Laminate of steel and rubber
251(1)
A.2 Problems and questions
252(5)
B Symbols
257(4)
B.1 Principal symbols and definitions
257(4)
Index 261