Preface |
|
v | |
|
|
1 | (8) |
|
1.1 Heterogeneous materials |
|
|
1 | (3) |
|
|
1 | (1) |
|
1.1.2 Classification and terminology |
|
|
2 | (1) |
|
1.1.3 Assumptions about the material |
|
|
3 | (1) |
|
1.1.4 Materials vs. structures |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (4) |
|
1.3.1 Modulus and density |
|
|
6 | (1) |
|
1.3.2 Strength and density |
|
|
7 | (1) |
|
|
8 | (1) |
|
2 Structures, properties, bounds |
|
|
9 | (28) |
|
|
9 | (1) |
|
|
10 | (6) |
|
2.2.1 Bounds on elastic constants of a homogeneous solid |
|
|
10 | (2) |
|
2.2.2 Bounds on heat capacity of a homogeneous solid |
|
|
12 | (1) |
|
2.2.3 Bounds on composite elastic properties |
|
|
13 | (2) |
|
2.2.4 Bounds on composite dielectric constant |
|
|
15 | (1) |
|
2.3 Attaining the bounds on properties |
|
|
16 | (7) |
|
|
16 | (1) |
|
|
17 | (1) |
|
2.3.3 Laminates: dielectric constant |
|
|
18 | (1) |
|
2.3.4 Laminates: structural hierarchy |
|
|
19 | (2) |
|
2.3.5 Attaining the Hashin-Shtrikman bounds: spheres |
|
|
21 | (1) |
|
2.3.6 Attaining the Hashin-Shtrikman bounds: laminates |
|
|
22 | (1) |
|
2.4 Inclusion shape: dilute concentration |
|
|
23 | (1) |
|
2.4.1 Spherical inclusions |
|
|
23 | (1) |
|
|
23 | (1) |
|
2.4.3 Platelet inclusions |
|
|
24 | (1) |
|
|
24 | (7) |
|
2.5.1 Negative structural stiffness and extreme damping |
|
|
24 | (2) |
|
2.5.2 Extreme nonlinear energy dissipation |
|
|
26 | (1) |
|
2.5.3 Phase transformations |
|
|
26 | (2) |
|
2.5.4 Negative and extreme moduli: stored energy |
|
|
28 | (2) |
|
2.5.5 Negative and extreme moduli: energy flux |
|
|
30 | (1) |
|
2.5.6 Negative heat capacity |
|
|
30 | (1) |
|
2.5.7 Negative capacitance |
|
|
30 | (1) |
|
|
31 | (6) |
|
3 Symmetry and anisotropy |
|
|
37 | (22) |
|
3.1 Introduction and Rationale |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (13) |
|
|
38 | (1) |
|
3.3.2 Reduced notation: matrix form |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
41 | (1) |
|
3.3.5 Modulus matrices and symmetry |
|
|
41 | (2) |
|
|
43 | (3) |
|
3.3.7 Physical interpretation: elastic modulus |
|
|
46 | (2) |
|
3.3.8 Physical interpretation: elastic compliance |
|
|
48 | (1) |
|
3.3.9 Physical interpretation: experiment |
|
|
49 | (1) |
|
3.3.10 How to show the effect of symmetry |
|
|
50 | (1) |
|
3.3.11 Neumann's principle |
|
|
51 | (1) |
|
3.4 Stress concentration: anisotropy |
|
|
51 | (1) |
|
|
52 | (1) |
|
3.6 Dielectric and optical properties |
|
|
53 | (1) |
|
3.7 Materials, symmetry and structure |
|
|
54 | (2) |
|
3.7.1 Examples of materials |
|
|
54 | (1) |
|
3.7.2 Poisson's ratio in materials with structure |
|
|
55 | (1) |
|
3.7.3 Quasicrystal elasticity |
|
|
56 | (1) |
|
|
56 | (3) |
|
|
59 | (36) |
|
4.1 Introduction: piezoelectricity, thermoelasticity |
|
|
59 | (2) |
|
4.2 Piezoelectric properties |
|
|
61 | (8) |
|
4.2.1 Piezoelectric properties and symmetry |
|
|
61 | (1) |
|
4.2.2 Piezoelectric materials |
|
|
62 | (4) |
|
4.2.3 Strongly piezoelectric materials |
|
|
66 | (1) |
|
4.2.4 Lead free piezoelectric materials |
|
|
67 | (1) |
|
4.2.5 Experimental piezoelectric measurement |
|
|
67 | (1) |
|
|
68 | (1) |
|
4.2.7 Pyroelectric materials |
|
|
68 | (1) |
|
4.2.8 Applications of piezoelectric and pyroelectric solids |
|
|
69 | (1) |
|
|
69 | (5) |
|
4.3.1 Thermoelasticity, symmetry, causes |
|
|
69 | (1) |
|
4.3.2 Thermal expansion anisotropy |
|
|
70 | (1) |
|
4.3.3 Small or negative thermal expansion |
|
|
71 | (1) |
|
4.3.4 Composite thermal expansion bounds |
|
|
72 | (1) |
|
4.3.5 Applications and thermal expansion |
|
|
72 | (1) |
|
4.3.6 Piezocaloric and related effects |
|
|
73 | (1) |
|
4.4 Fluid-solid composites |
|
|
74 | (4) |
|
4.4.1 Constitutive equations |
|
|
74 | (1) |
|
4.4.2 Experimental determination of constants |
|
|
75 | (1) |
|
4.4.3 Applications: geology and geological engineering |
|
|
76 | (1) |
|
|
76 | (1) |
|
4.4.5 Streaming potentials |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
4.6.1 Non-reciprocal and extreme materials |
|
|
80 | (1) |
|
4.7 Slow and fast processes |
|
|
80 | (4) |
|
|
80 | (1) |
|
4.7.2 Isothermal and adiabatic moduli |
|
|
81 | (1) |
|
4.7.3 Short-/open-circuit moduli |
|
|
82 | (1) |
|
4.7.4 Fluid-solid composites |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
4.11 Other coupled fields |
|
|
87 | (1) |
|
|
87 | (8) |
|
5 Particles, fibers, platelets |
|
|
95 | (32) |
|
5.1 Introduction: structure |
|
|
95 | (1) |
|
5.2 Particulate polymer matrix solids |
|
|
96 | (5) |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
99 | (1) |
|
5.2.4 Filled polymers; tire rubber; nano-fillers |
|
|
100 | (1) |
|
5.2.5 Self healing polymers |
|
|
101 | (1) |
|
5.3 Fibrous polymer matrix solids |
|
|
101 | (9) |
|
|
101 | (1) |
|
5.3.2 Unidirectional fibrous composites |
|
|
102 | (1) |
|
|
103 | (4) |
|
5.3.4 Nano-tubes as fibers |
|
|
107 | (2) |
|
5.3.5 Effects of moisture |
|
|
109 | (1) |
|
|
109 | (1) |
|
5.3.7 Making fibrous composites |
|
|
109 | (1) |
|
5.4 Platelet reinforcement |
|
|
110 | (1) |
|
5.5 Metal matrix composites |
|
|
111 | (1) |
|
5.5.1 Particulate metal matrix composite stiffness and strength |
|
|
111 | (1) |
|
5.5.2 Nano-size particle inclusions in metal |
|
|
112 | (1) |
|
5.5.3 Fiber inclusions in metal |
|
|
112 | (1) |
|
5.6 Composites with renewable constituents |
|
|
112 | (1) |
|
5.7 Thermoelastic composites |
|
|
113 | (3) |
|
5.7.1 Thermal expansion, Voigt |
|
|
113 | (1) |
|
5.7.2 Unidirectional composites: thermal expansion |
|
|
114 | (1) |
|
|
114 | (2) |
|
5.8 Piezoelectric composites |
|
|
116 | (4) |
|
5.8.1 Piezoelectric composite structure and rationale |
|
|
116 | (2) |
|
5.8.2 Piezoelectric Voigt composite |
|
|
118 | (1) |
|
5.8.3 Piezoelectric benders |
|
|
119 | (1) |
|
5.8.4 Piezoelectric composite uses and fabrication |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
121 | (6) |
|
6 Cellular solids and lattices |
|
|
127 | (56) |
|
|
127 | (1) |
|
|
127 | (2) |
|
|
129 | (8) |
|
|
131 | (2) |
|
6.3.2 Honeycomb Poisson's ratio |
|
|
133 | (1) |
|
|
134 | (1) |
|
6.3.4 Square cell honeycombs |
|
|
135 | (1) |
|
6.3.5 Hierarchical solids: honeycombs |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (7) |
|
6.4.1 Foam elastic modulus |
|
|
138 | (2) |
|
6.4.2 Poisson's ratio of foams |
|
|
140 | (1) |
|
6.4.3 Nonlinearity and strength of foams |
|
|
140 | (2) |
|
|
142 | (1) |
|
6.4.5 Dense foams and syntactic foams |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (12) |
|
6.5.1 Truss lattices: ribs |
|
|
144 | (3) |
|
6.5.2 Continuous rib lattices |
|
|
147 | (1) |
|
6.5.3 Lattice property bounds |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (2) |
|
6.5.6 Hierarchical lattices |
|
|
153 | (2) |
|
|
155 | (1) |
|
6.6 Poisson's ratio tuning |
|
|
156 | (8) |
|
6.6.1 Poisson's ratio in anisotropic materials |
|
|
156 | (1) |
|
6.6.2 Poisson's tuning ratio in foams: negative or extreme |
|
|
157 | (2) |
|
6.6.3 Poisson's ratio tuning in hinged structures: negative or extreme |
|
|
159 | (2) |
|
6.6.4 Poisson's ratio tuning in lattices: negative or extreme |
|
|
161 | (3) |
|
6.7 Tuning coupled fields |
|
|
164 | (3) |
|
6.7.1 Tuning thermal expansion: negative or extreme |
|
|
164 | (2) |
|
6.7.2 Piezoelectric lattices |
|
|
166 | (1) |
|
6.7.3 Tuning the Hall effect |
|
|
167 | (1) |
|
|
167 | (4) |
|
|
167 | (1) |
|
6.8.2 Tuning refraction of waves, Negative index |
|
|
168 | (2) |
|
6.8.3 Electromagnetic lattices; cloaking |
|
|
170 | (1) |
|
6.8.4 Acoustic lattices; cloaking |
|
|
170 | (1) |
|
6.9 Applications of cellular solids |
|
|
171 | (2) |
|
6.9.1 Applications of foam and honeycomb |
|
|
171 | (1) |
|
6.9.2 Applications of lattices |
|
|
172 | (1) |
|
|
173 | (10) |
|
7 Biological material structural hierarchy |
|
|
183 | (18) |
|
|
183 | (1) |
|
|
183 | (8) |
|
7.2.1 Compact bone: stiffness and strength |
|
|
184 | (4) |
|
7.2.2 Compact bone: piezoelectricity |
|
|
188 | (1) |
|
7.2.3 Compact bone: adaptation |
|
|
188 | (1) |
|
7.2.4 Compact bone: stress concentration |
|
|
189 | (1) |
|
|
189 | (2) |
|
|
191 | (1) |
|
7.3 Ligaments and tendons |
|
|
191 | (3) |
|
7.4 Wood and other plant tissue |
|
|
194 | (3) |
|
7.4.1 Wood structure, stiffness and strength |
|
|
194 | (3) |
|
7.4.2 Wood piezoelectricity |
|
|
197 | (1) |
|
|
197 | (4) |
|
|
201 | (22) |
|
|
201 | (1) |
|
8.2 Stress concentrations |
|
|
201 | (2) |
|
|
201 | (1) |
|
8.2.2 Analysis: ad hoc criteria |
|
|
202 | (1) |
|
8.2.3 Analysis: generalized elasticity |
|
|
203 | (1) |
|
|
203 | (6) |
|
8.3.1 Size effects: structural example |
|
|
203 | (2) |
|
8.3.2 Size effects: continuum view |
|
|
205 | (1) |
|
8.3.3 Size effects: experiment |
|
|
205 | (4) |
|
8.4 Generalized continuum elasticity |
|
|
209 | (6) |
|
|
209 | (2) |
|
8.4.2 Stress and strain fields: effect of microstructure |
|
|
211 | (1) |
|
|
212 | (1) |
|
8.4.4 Homogenization analyses |
|
|
212 | (1) |
|
|
213 | (1) |
|
8.4.6 Chirality in elasticity |
|
|
213 | (1) |
|
8.4.7 Other generalized continua |
|
|
214 | (1) |
|
8.5 Flexo-electricity: gradient piezoelectricity |
|
|
215 | (1) |
|
8.6 Surface and free edge effects |
|
|
216 | (1) |
|
|
216 | (7) |
|
9 Viscoelastic composites |
|
|
223 | (20) |
|
9.1 Viscoelastic properties: introduction |
|
|
223 | (1) |
|
9.2 Viscoelastic functions |
|
|
223 | (4) |
|
|
223 | (1) |
|
|
224 | (1) |
|
9.2.3 Response to sinusoidal input |
|
|
225 | (1) |
|
9.2.4 Viscoelasticity of typical materials |
|
|
226 | (1) |
|
9.3 Viscoelasticity of composites |
|
|
227 | (11) |
|
9.3.1 Viscoelasticity of Voigt laminates |
|
|
227 | (1) |
|
9.3.2 Stiffness-damping maps of extremal composites |
|
|
228 | (2) |
|
9.3.3 Stiffness-damping map: inclusion shape |
|
|
230 | (2) |
|
9.3.4 Bounds on viscoelastic properties |
|
|
232 | (1) |
|
9.3.5 Waves in composites |
|
|
232 | (1) |
|
9.3.6 Negative damping: acoustic amplification |
|
|
233 | (1) |
|
9.3.7 Extreme viscoelastic composites: inclusion shape |
|
|
233 | (1) |
|
9.3.8 Extreme viscoelastic composites: stored energy |
|
|
234 | (1) |
|
9.3.9 Viscoelasticity of fibrous composites |
|
|
234 | (1) |
|
9.3.10 Effect of temperature |
|
|
235 | (1) |
|
9.3.11 Poisson's ratio of viscoelastic materials |
|
|
236 | (1) |
|
9.3.12 Viscoelasticity of cellular solids |
|
|
236 | (1) |
|
9.3.13 Viscoelasticity of bone |
|
|
237 | (1) |
|
9.3.14 Viscoelasticity of tendon and ligament |
|
|
237 | (1) |
|
9.3.15 Viscoelastic damping of metal matrix composites |
|
|
237 | (1) |
|
|
238 | (5) |
|
|
243 | (14) |
|
|
243 | (9) |
|
A.1.1 Transverse, fibrous |
|
|
243 | (1) |
|
A.1.2 Physical meaning of C1111 in applications |
|
|
243 | (1) |
|
A.1.3 Adiabatic and isothermal compliance |
|
|
244 | (1) |
|
A.1.4 Foam stiffness vs. density |
|
|
245 | (1) |
|
A.1.5 Steel foam and solid polymer |
|
|
245 | (1) |
|
A.1.6 Cardboard honeycomb strength |
|
|
245 | (1) |
|
A.1.7 Poisson's ratio of honeycomb |
|
|
246 | (1) |
|
A.1.8 Particle inclusion concentration |
|
|
246 | (1) |
|
A.1.9 Multiple particle sizes |
|
|
247 | (1) |
|
A.1.10 Spongy bone modulus |
|
|
247 | (1) |
|
A.1.11 Sneaker sole design |
|
|
248 | (1) |
|
|
248 | (1) |
|
A.1.13 Lattice with tubular ribs |
|
|
249 | (1) |
|
A.1.14 Motion from piezoelectric disk |
|
|
250 | (1) |
|
A.1.15 Voltage from piezoelectric disk |
|
|
250 | (1) |
|
A.1.16 Piezoelectric bender |
|
|
251 | (1) |
|
A.1.17 Laminate of steel and rubber |
|
|
251 | (1) |
|
A.2 Problems and questions |
|
|
252 | (5) |
|
|
257 | (4) |
|
B.1 Principal symbols and definitions |
|
|
257 | (4) |
Index |
|
261 | |