Atnaujinkite slapukų nuostatas

El. knyga: Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems

Edited by (Professor, Veterinary Faculty, University of Thessaly, Karditsa, Greece), Edited by (Emeritus Professor, University of KwaZulu-Natal, South Africa)
  • Formatas: PDF+DRM
  • Išleidimo metai: 17-May-2018
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128114803
  • Formatas: PDF+DRM
  • Išleidimo metai: 17-May-2018
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128114803

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems, the most advanced and research focused text on all aspects of solar energy engineering, is a must have edition on the present state of solar technology, integration and worldwide distribution. In addition, the book provides a high-level assessment of the growth trends in photovoltaics and how investment, planning and economic infrastructure can support those innovations. Each chapter includes a research overview with a detailed analysis and new case studies that look at how recent research developments can be applied. Written by some of the most forward-thinking professionals, this book is an invaluable reference for engineers.

  • Contains analysis of the latest high-level research and explores real world application potential in relation to developments
  • Uses system international (SI) units and imperial units throughout to appeal to global engineers
  • Offers measurable data written by a world expert in the field on the latest developments in this fast moving and vital subject
List of Contributors
xv
Preface xix
PART 1 Introduction
1 Why Solar Energy?
3(16)
Trevor M. Letcher
1.1 Introduction
3(2)
1.2 How Much Solar Energy Falls on the Earth and How Much is Used to Make Electricity?
5(1)
1.3 Types of Technology That Can Harness Solar Energy
6(2)
1.4 Why We Need to Develop Solar Energy
8(2)
1.5 The Difficulties With Harnessing Solar Energy
10(1)
1.6 Is Harnessing Solar Energy Cost Effective?
10(1)
1.7 A Comparison of Solar PV Installed Capacity With Other Renewable Forms of Energy
11(1)
1.8 The Future of Solar Energy
11(3)
1.9 Conclusions
14(5)
Acknowledgment
14(1)
References
14(5)
PART 2 Solar Energy Resource and World Wide
2 Solar Power Development in China
19(18)
Xiaoping He
2.1 Introduction
19(1)
2.2 Photovoltaic Manufacture
20(7)
2.3 Industrial Policy
27(3)
2.4 Future Solar Energy in China
30(3)
2.5 Conclusions
33(4)
References
34(3)
3 Solar Power in Europe: Status and Outlook
37(16)
Michael Schmela
Thomas Doring
Andres Pinto-Bello Gomez
Alexandre Roesch
3.1 The Past: Solar Developments in Europe (2000--16)
37(3)
3.2 The Future: 5-Year Market Outlook (2017--21)
40(5)
3.3 Solar in the European Electricity System
45(5)
3.4 Policy Recommendation for Solar in Europe
50(1)
3.5 Conclusions
51(2)
References
52(1)
4 Solar Power in the USA---Status and Outlook
53(28)
Michael Ginsberg
Vasilis M. Fthenakis
4.1 Overall US Market Indicators
53(11)
4.2 The United States as a Patchwork of States
64(3)
4.3 US Solar Energy Market Outlook
67(4)
4.4 The United States as a Driver of Innovation
71(10)
References
77(4)
5 Sustainable Solar Energy Collection and Storage for Rural Sub-Saharan Africa
81(30)
Rhys G. Charles
Matthew L. Davies
Peter Douglas
Ingrid L. Hallin
5.1 Introduction
81(1)
5.2 Geography
82(5)
5.3 The Circular Economy Approach
87(4)
5.4 Photovoltaic Technology
91(2)
5.5 Energy, and Energy Storage, Needs of Households in Rural Africa
93(2)
5.6 Energy Storage---Battery Choices
95(2)
5.7 Carbon Footprint and Lifecycle Impact Considerations
97(2)
5.8 Resource-Efficiency and Circular Economy
99(1)
5.9 Future Solar Cell Technologies
100(3)
5.10 Conclusions
103(8)
References
104(7)
PART 3 Thermal Solar Energy Technology
6 Solar Water Heaters
111(16)
Zhangyuan Wang
Zicong Huang
Siming Zheng
Xudong Zhao
6.1 Introduction
111(3)
6.2 Working Principle of SWH Systems
114(1)
6.3 The Classification of SWH Systems
115(3)
6.4 Most Advanced Technologies of SWHs
118(9)
References
124(3)
7 Concentrating Solar Thermal Power
127(24)
Eduardo Zarza-Moya
7.1 Introduction
127(4)
7.2 Parabolic-Trough Collectors
131(5)
7.3 Central Receiver Systems
136(5)
7.4 Compact Linear Fresnel Concentrators
141(1)
7.5 Parabolic Dishes
142(1)
7.6 Technology Trends
143(8)
References
147(4)
PART 4 Photo Voltaic Solar Energy---Generation of Electricity
8 Photovoltaics: The Basics
151(30)
Vitezslav Benda
8.1 Introduction
151(1)
8.2 Light Absorption in Materials and Excess Carrier Generation
151(8)
8.3 Photovoltaic Effect and Basic Solar Cell Parameters
159(8)
8.4 Principles of Solar Cell Construction
167(9)
8.5 Photovoltaic Modules---Principles and Construction
176(5)
References
179(2)
9 Crystalline Silicon Solar Cell and Module Technology
181(34)
Vitezslav Benda
9.1 Introduction
181(1)
9.2 Semiconductor Silicon
181(3)
9.3 Crystalline Silicon Wafer Fabrication
184(6)
9.4 Crystalline Silicon PV Cell Design and Fabrication Technology
190(13)
9.5 Crystalline Si Module Design and Fabrication
203(6)
9.6 Conclusions
209(6)
References
210(5)
10 CdTe Solar Cells
215(18)
Tom Baines
Thomas P. Shalvey
Jonathan D. Major
10.1 Introduction
215(1)
10.2 The CdTe Solar Cell: History, Layers, and Processes
215(10)
10.3 Looking Forward---Voltage, Doping, and Substrate Cells
225(3)
10.4 Conclusion
228(5)
References
228(5)
11 An Overview of Hybrid Organic-Inorganic Metal Halide Perovskite Solar Cells
233(22)
Khagendra P. Bhandari
Randy J. Ellingson
11.1 Introduction
233(2)
11.2 Thin Film Fabrication/Formation
235(2)
11.3 Perovskite Solar Cell Device Structure
237(3)
11.4 Device Optimization
240(5)
11.5 Stability Issues and Challenges of Perovskite Solar Cells
245(2)
11.6 Summary
247(8)
References
247(8)
12 Organic Photovoltaics
255(24)
Ross A. Hatton
12.1 Introduction
255(4)
12.2 Operating Principles
259(3)
12.3 Device Structure
262(1)
12.4 Challenges and Opportunities for Improved Performance
263(11)
12.5 Conclusion
274(5)
References
274(5)
13 Upconversion and Downconversion Processes for Photovoltaics
279(20)
Aruna Ivaturi
Hah Upadhyaya
13.1 Introduction
279(1)
13.2 Upconversion
280(10)
13.3 Downconversion
290(3)
13.4 Conclusions
293(6)
References
294(5)
14 Advanced Building Integrated Photovoltaic/Thermal Technologies
299(22)
Fangliang Chen
Frank Pao
Huiming Yin
14.1 Introduction
299(2)
14.2 Building Integrated Thermal Electric Roofing System
301(2)
14.3 BIPVT Solar Roof
303(4)
14.4 Modeling Procedures and Performance Evaluation of the Multifunctional BIPVT Panel
307(9)
14.5 Summary and Conclusions
316(5)
Acknowledgment
317(1)
References
317(4)
15 Integration of PV Generated Electricity into National Grids
321(12)
Graham Stein
Trevor M. Letcher
15.1 Introduction: Rapid Growth of the Solar PV Industry
321(1)
15.2 Why We Need to Integrate Solar Power into National Grids
322(1)
15.3 How Solar PV Fits in
323(1)
15.4 Is the Duck Relevant to Solar PV in United Kingdom?
324(1)
15.5 Effect of Growth in Small Distributed Installations
325(2)
15.6 `Nonsynchronous' Inverter Type Generators Supporting the Network
327(2)
15.7 Converter Technology
329(1)
15.8 Conclusions
330(3)
References
331(2)
16 Small-Scale PV Systems Used in Domestic Applications
333(18)
Nesimi Ertugrul
16.1 Introduction
333(3)
16.2 Electrical Characteristics of PV Cells / Modules
336(2)
16.3 Features of Converter Topologies in PV Systems
338(5)
16.4 Configurations of Grid-Tied PV Systems
343(2)
16.5 Issues on PV Systems and Cell and Module Level Failures
345(4)
16.6 Conclusions
349(2)
References
350(1)
17 Energy and Carbon Intensities of Stored Solar Photovoltaic Energy
351(10)
Charles J. Barnhart
17.1 The Need for Storage
351(2)
17.2 Key Characteristics for Storage
353(1)
17.3 Net Energy Analysis of Storing and Curtailing Solar PV Resources
354(2)
17.4 The Carbon Footprint of Storing Solar PV
356(2)
17.5 Conclusions
358(3)
References
359(2)
18 Thin Film Photovoltaics
361(12)
Senthilarasu Sundaram
Katie Shanks
Hah Upadhyaya
18.1 Introduction
361(2)
18.2 Thin Film Cell Configurations
363(4)
18.3 Deposition and Growth Techniques
367(1)
18.4 Flexible Cell Formations
368(1)
18.5 Challenges
368(1)
18.6 Conclusions
369(4)
References
369(4)
PART 5 Environmental Impacts of Solar Energy
19 Solar Panels in the Landscape
373(18)
Beatrice Dower
19.1 Introduction
373(1)
19.2 Solar Installation Types
374(6)
19.3 Key Visual Elements
380(3)
19.4 Environmental Issues in Planning
383(4)
19.5 Offset Mitigation
387(1)
19.6 Concluding Remarks
388(3)
References
389(2)
20 Solar Energy Development and the Biosphere
391(16)
Michelle Murphy-Mariscal
Steven M. Grodsky
Rebecca R. Hernandez
20.1 Introduction
391(1)
20.2 Solar Energy Effectors and Potential Effects on the Environment
392(4)
20.3 Ecological Impacts and Responses
396(5)
20.4 Summary
401(6)
References
402(5)
21 Energy Return on Energy Invested (EROI) and Energy Payback Time (EPBT) for PVs
407(20)
Ajay Gupta
21.1 Introduction
407(2)
21.2 Methods of EROI Analysis
409(8)
21.3 Results of EROI Analysis of PV Systems, Harmonization and Trends Over Time
417(10)
References
423(4)
22 Life Cycle Analysis of Photovoltaics: Strategic Technology Assessment
427(18)
Vasilis M. Fthenakis
22.1 Introduction
427(1)
22.2 Life Cycle Analysis Methodology
427(4)
22.3 Current Photovoltaic Status
431(2)
22.4 Current Photovoltaic Life Cycle Analysis Results
433(1)
22.5 Technology Roadmaping
433(4)
22.6 Prospective Life Cycle Analysis of Future Designs
437(2)
22.7 Results
439(2)
22.8 Conclusion
441(4)
References
442(3)
PART 6 Economics, Financial Modeling and Investment in Pvs, Growth Trends and the Future of Solar Energy
23 Materials: Abundance, Purification, and the Energy Cost Associated with the Manufacture of Si, CdTe, and CIGS PV
445(24)
Ajay Gupta
23.1 Introduction
445(1)
23.2 Critical Metals
446(2)
23.3 Material Requirements for PV
448(9)
23.4 Energy Costs of Materials
457(7)
23.5 Conclusion
464(5)
References
464(5)
24 Global Growth Trends and the Future of Solar Power: Leading Countries, Segments, and Their Prospects
469(16)
James Watson
Kristina Thoring
Alyssa Pek
24.1 Introduction
469(1)
24.2 Solar Growth Trends
470(4)
24.3 Future Market Growth Potential
474(4)
24.4 Segmental Growth
478(2)
24.5 Industrial Growth
480(2)
24.6 Conclusions
482(3)
References
482(3)
25 Optimal Renewable Energy Systems: Minimizing the Cost of Intermittent Sources and Energy Storage
485(20)
David Timmons
25.1 Introduction
485(1)
25.2 Renewable Energy Microeconomic Considerations
486(3)
25.3 Economic Theory of Renewable Energy Intermittency
489(4)
25.4 Economics of Renewable Energy Intermittency: Empirical Example from Vermont
493(7)
25.5 Extensions and Conclusions
500(5)
References
502(3)
Index 505
Professor Trevor Letcher is an Emeritus Professor at the University of KwaZulu-Natal, South Africa, and living in the United Kingdom. He was previously Professor of Chemistry, and Head of Department, at the University of the Witwatersrand, Rhodes University, and Natal, in South Africa (1969-2004). He has published over 300 papers on areas such as chemical thermodynamic and waste from landfill in peer reviewed journals, and 100 papers in popular science and education journals. Prof. Letcher has edited and/or written 32 major books, of which 22 were published by Elsevier, on topics ranging from future energy, climate change, storing energy, waste, tyre waste and recycling, wind energy, solar energy, managing global warming, plastic waste, renewable energy, and environmental disasters. He has been awarded gold medals by the South African Institute of Chemistry and the South African Association for the Advancement of Science, and the Journal of Chemical Thermodynamics honoured him with a Festschrift in 2018. He is a life member of both the Royal Society of Chemistry (London) and the South African Institute of Chemistry. He is on the editorial board of the Journal of Chemical Thermodynamics, and is a Director of the Board of the International Association of Chemical Thermodynamics since 2002. Vasilis Fthenakis is the Founding Director of the Center for Life Cycle Analysis (CLCA), Adjunct Professor in the Department of Earth and Environmental Engineering and the Department of Electrical Engineering at Columbia University and Distinguished Scientist Emeritus at Brookhaven National Laboratory. Fthenakis is internationally recognized for his leading work in the energy-environment nexus and renewable energy grid integration. With a focus on developing methodologies, models, and tools to analyze cleaner energy alternatives, he has been a pioneer in studying the environmental impact, resource availability and recycling of photovoltaics (PVs), accelerating their commercial adoption around the world. More recently, he broadened the CLCAs research to explore solar-enabled water desalination and green” hydrogen production. He is a Fellow of the American Institute of Chemical Engineers (AIChE), a Fellow of the Institute of Electrical and Electronic Engineers (IEEE) and a recipient of several honors and awards including the 2022 Karl Boer Solar Energy Medal of Merit for distinguished contributions to quest for sustainable energy”.