Atnaujinkite slapukų nuostatas

Computation Trees: A Generalization of Decision Trees [Kietas viršelis]

  • Formatas: Hardback, 168 pages, aukštis x plotis: 235x155 mm, 4 Illustrations, black and white; XVI, 168 p. 4 illus., 1 Hardback
  • Serija: Intelligent Systems Reference Library 275
  • Išleidimo metai: 26-Sep-2025
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031917472
  • ISBN-13: 9783031917479
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 168 pages, aukštis x plotis: 235x155 mm, 4 Illustrations, black and white; XVI, 168 p. 4 illus., 1 Hardback
  • Serija: Intelligent Systems Reference Library 275
  • Išleidimo metai: 26-Sep-2025
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031917472
  • ISBN-13: 9783031917479
Kitos knygos pagal šią temą:

This book is devoted to the study of deterministic and nondeterministic computation trees. Computation trees are a natural generalization of decision trees: in addition to the one-place predicate-type operations (attributes) used in decision trees, computation trees can use multi-place predicate and function operations. They arise both where we deal with algorithms for solving problems of combinatorial optimization, computational geometry, etc., and where we solve classification or prediction problems, especially if we use combinations of input variables as attributes. This book mainly studies the complexity of computation trees and also examines related optimization problems. The results discussed in this book may be useful to researchers studying algorithms and using algorithm models similar to computation trees. These results may also be useful to researchers working with decision trees and decision rule systems in data analysis, particularly, in rough set theory, logical analysis of data, and test theory. The book is also used to create graduate courses.

Introduction.- Computation Trees Over Predicate Structures. Local
Approach.- Computation Trees Over Predicate Structures. Global Approach.-
Rough Analysis of Computation Trees.- Algorithmic Problems for Computation
Trees.- Programs Versus Finite Tree-Programs.