Atnaujinkite slapukų nuostatas

Computational and Machine Learning Tools for Archaeological Site Modeling 2022 ed. [Kietas viršelis]

  • Formatas: Hardback, 296 pages, aukštis x plotis: 235x155 mm, weight: 641 g, 139 Illustrations, color; 20 Illustrations, black and white; XVIII, 296 p. 159 illus., 139 illus. in color., 1 Hardback
  • Serija: Springer Theses
  • Išleidimo metai: 25-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030885666
  • ISBN-13: 9783030885663
  • Formatas: Hardback, 296 pages, aukštis x plotis: 235x155 mm, weight: 641 g, 139 Illustrations, color; 20 Illustrations, black and white; XVIII, 296 p. 159 illus., 139 illus. in color., 1 Hardback
  • Serija: Springer Theses
  • Išleidimo metai: 25-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030885666
  • ISBN-13: 9783030885663
This book describes a novel machine-learning based approach   to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

 















 Introduction.- Space, Environment and Quantitative approaches in
Archaeology.- Predictive Modeling.- Materials and Data.