Atnaujinkite slapukų nuostatas

El. knyga: Computational Modeling in Tissue Engineering

Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in: (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population;(ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth.The book presents examples of each of the above mentioned areas of computational modeling. The underlying tissue engineering applications will vary from blood vessels over trachea to cartilage and bone. For the chapters describing examples of the first two areas, the main focus is on (the optimization of) mechanical signals, mass transport and fluid flow encountered by the cells in scaffolds and bioreactors as well as on the optimization of the cell population itself. In the chapters describing modeling contributions in the third area, the focus will shift towards the biology, the complex interactions between biology and the micro-environmental signals and the ways in which modeling might be able to assist in investigating and mastering this complexity. The chapters cover issues related to (multiscale/multiphysics) model building, training and validation, but also discuss recent advances in scientific computing techniques that are needed to implement these models as well as new tools that can be used to experimentally validate the computational results.

This book surveys modeling tools allowing a quantitative approach to the study of biological complexity, including the tissue engineering product; optimizing tissue engineering and assessing the influence of the in vivo environment on product behavior.
In Vivo, In Vitro, In Silico: Computational Tools for Product and Process Design in Tissue Engineering 1(18)
Liesbet Geris
Part I Computational Tools for Product Design
Protein Modelling and Surface Folding by Limiting the Degrees of Freedom
19(28)
Meir Israelowitz
Birgit Weyand
Syed W. H. Rizvi
Christoph Gille
Herbert P. von Schroeder
Adaptive Quasi-Linear Viscoelastic Modeling
47(38)
Ali Nekouzadeh
Guy M. Genin
Computational Modeling of Mass Transport and Its Relation to Cell Behavior in Tissue Engineering Constructs
85(22)
Dennis Lambrechts
Jan Schrooten
Tom Van de Putte
Hans Van Oosterwyck
Computational Methods in the Modeling of Scaffolds for Tissue Engineering
107(20)
Andy L. Olivares
Damien Lacroix
Computational Modeling of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals
127(18)
Min Jae Song
David Dean
Melissa L. Knothe Tate
Modelling the Cryopreservation Process of a Suspension of Cells: The Effect of a Size-Distributed Cell Population
145(38)
Alberto Cincotti
Sarah Fadda
Mesenchymal Stem Cell Heterogeneity and Ageing In Vitro: A Model Approach
183(24)
Jorg Galle
Martin Hoffmann
Axel Krinner
Image-Based Cell Quality Assessment: Modeling of Cell Morphology and Quality for Clinical Cell Therapy
207(22)
Hiroto Sasaki
Fumiko Matsuoka
Wakana Yamamoto
Kenji Kojima
Hiroyuki Honda
Ryuji Kato
Part II Computational Tools for Process Design
Continuum Modelling of In Vitro Tissue Engineering: A Review
229(38)
RD O'Dea
HM Byrne
SL Waters
Multiphysics Computational Modeling in Cartilage Tissue Engineering
267(20)
Manuela Teresa Raimondi
Paola Causin
Matteo Lagana
Paolo Zunino
Riccardo Sacco
Oxygen Transport in Bioreactors for Engineered Vascular Tissues
287(22)
Jason W. Bjork
Anton M. Safonov
Robert T. Tranquillo
Part III Computational Tools for the Study of the In Vivo Process
Multi-Scale Modelling of Vascular Disease: Abdominal Aortic Aneurysm Evolution
309(32)
Paul N. Watton
Huifeng Huang
Yiannis Ventikos
Computational Mechanobiology in Cartilage and Bone Tissue Engineering: From Cell Phenotype to Tissue Structure
341(38)
Thomas Nagel
Daniel J. Kelly
Mechanobiological Modelling of Angiogenesis: Impact on Tissue Engineering and Bone Regeneration
379(26)
Esther Reina-Romo
Clara Valero
Carlos Borau
Rafael Rey
Etelvina Javierre
Maria Jose Gomez-Benito
Jaime Dominguez
Jose Manuel Garcia-Aznar
Mathematical Modelling of Regeneration of a Tissue-Engineered Trachea
405(36)
Greg Lemon
John R. King
Paolo Macchiarini
Author Index 441