Atnaujinkite slapukų nuostatas

El. knyga: Computational Neuroscience: An Essential Guide to Membrane Potentials, Receptive Fields, and Neural Networks

  • Formatas: EPUB+DRM
  • Išleidimo metai: 31-Dec-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031757051
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 31-Dec-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031757051
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides an essential introduction to modeling the nervous system at various levels. Readers will learn about the intricate mechanisms of neural activity, receptive fields, neural networks, and information coding.





The chapters cover topics such as membrane potentials, the Hodgkin-Huxley theory, receptive fields and their specificity for important stimulus dimensions, Fourier analysis for neuroscientists, pattern recognition and self-organization in neural networks, and the structure of neural representations. The second edition includes revised text and figures for improved readability and completeness. Key points are highlighted throughout to help readers keep track of central ideas.





Researchers in the field of neuroscience with backgrounds in biology, psychology, or medicine will find this book particularly beneficial. It is also an invaluable reference for all neuroscientists who use computational methods in their daily work. Whether you are a theoretical scientist approaching the field or an experienced practitioner seeking to deepen your understanding, "Computational Neuroscience - An Essential Guide to Membrane Potentials, Receptive Fields, and Neural Networks" offers a comprehensive guide to mastering the fundamentals of this dynamic discipline. 

Chapter
1. Excitable Membranes and Neural Conduction.
Chapter
2. Receptive Fields and the Specificity of Neuronal Firing.
Chapter
3. Functional Models of Receptive Fields.
Chapter
4. Fourier Analysis for Neuroscientists.
Chapter
5. Artificial Neural Networks and Classification.
Chapter
6. Artificial Neural Networks With Interacting Output Units.
Chapter
7. Coding and Representation.

Hanspeter A. Mallot received his PhD from the Faculty of Biology, University of Mainz, Germany, in 1986. In the following years, he held postdoctoral and research positions at the Massachusetts Institute of Technology, the Ruhr-University Bochum, the Max-Planck-Institute for Biological Cybernetics in Tübingen and the Institute for Advanced Study, Berlin. From 2000 to 2023, he headed the cognitive neuroscience unit at the University of Tübingen, where he is currently affiliated as a senior professor. Hanspeter has published more than 100 papers and three books on topics of visual perception, spatial cognition, and neural information processing.