Dedication |
|
v | |
Preface |
|
vii | |
About the Authors |
|
xi | |
List of Tables |
|
xix | |
Chapter 1 Introduction |
|
1 | (18) |
|
1.1 Synaptic Plasticity and Related Dynamics |
|
|
1 | (7) |
|
1.2 Importance of Synaptic Plasticity |
|
|
8 | (3) |
|
1.3 Modelling Single Cell Dynamics Associated with Synaptic Plasticity |
|
|
11 | (3) |
|
|
14 | (5) |
Chapter 2 Mathematical Methods in Modelling Biochemical Networks in Systems Biology |
|
19 | (68) |
|
|
21 | (3) |
|
|
22 | (1) |
|
|
23 | (1) |
|
2.2 Mathematical Concepts |
|
|
24 | (17) |
|
2.2.1 Mass action rate law |
|
|
24 | (5) |
|
2.2.2 Michaelis-Menten rate law |
|
|
29 | (3) |
|
|
32 | (3) |
|
2.2.4 Parameter estimation using Markov chain Monte Carlo (MCMC) |
|
|
35 | (4) |
|
2.2.5 Parameter sensitivity analysis |
|
|
39 | (2) |
|
2.3 Intracellular Fluctuations |
|
|
41 | (11) |
|
2.3.1 "Noise" in networks |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (1) |
|
2.3.4 Notable experiments |
|
|
44 | (3) |
|
2.3.5 Noise: nuisance or necessity? |
|
|
47 | (1) |
|
2.3.6 Noise propagation in networks |
|
|
48 | (2) |
|
2.3.7 Noise and robustness |
|
|
50 | (1) |
|
2.3.8 Noise controlling mechanisms |
|
|
51 | (1) |
|
|
52 | (5) |
|
2.4.1 Importance of mathematical modelling |
|
|
52 | (2) |
|
2.4.2 Nonlinearity issues in modelling |
|
|
54 | (1) |
|
2.4.3 Multi-scale issues in modelling biochemical systems |
|
|
55 | (2) |
|
2.5 Approaches in Modelling |
|
|
57 | (21) |
|
2.5.1 Bottom-up modelling |
|
|
58 | (20) |
|
2.5.2 Top-down: Reverse engineering of networks |
|
|
78 | (1) |
|
|
78 | (9) |
Chapter 3 Proteins, Mechanisms and Networks in NMDAR-dependent Synaptic Plasticity |
|
87 | (38) |
|
|
87 | (2) |
|
3.2 NMDAR-Dependent Synaptic Plasticity and Memory |
|
|
89 | (14) |
|
|
93 | (1) |
|
3.2.2 Ca2+ and CaM interaction |
|
|
94 | (1) |
|
|
94 | (4) |
|
3.2.4 Cyclic adenosine monophosphate (cAMP) and PKA |
|
|
98 | (1) |
|
3.2.5 A-kinase anchoring proteins |
|
|
99 | (1) |
|
3.2.6 Interactions among modulators |
|
|
100 | (2) |
|
3.2.7 Summary of the alterations on AMPAR |
|
|
102 | (1) |
|
3.3 Mathematical Models of Synaptic Plasticity |
|
|
103 | (12) |
|
3.3.1 Generating Ca2+ signals |
|
|
105 | (2) |
|
3.3.2 Single component models |
|
|
107 | (3) |
|
|
110 | (1) |
|
3.3.4 Complete pathway models |
|
|
111 | (4) |
|
|
115 | (10) |
Chapter 4 A Theoretical Model of State Transition of CaMKII |
|
125 | (44) |
|
|
125 | (1) |
|
|
126 | (18) |
|
|
127 | (1) |
|
4.2.2 The states of CaMKII |
|
|
128 | (1) |
|
4.2.3 A probabilistic framework of the CaMKII-NMDAR binding |
|
|
129 | (6) |
|
|
135 | (4) |
|
4.2.5 A new model of HST of CaMKII |
|
|
139 | (4) |
|
4.2.6 Complete model and constraints |
|
|
143 | (1) |
|
4.3 Simulations with MoHST |
|
|
144 | (7) |
|
4.3.1 Input: Generation of Ca2+ |
|
|
144 | (2) |
|
4.3.2 Estimation of parameters |
|
|
146 | (3) |
|
4.3.3 Computational implementation and experiments with MoHST |
|
|
149 | (2) |
|
4.4 Parameter Perturbation |
|
|
151 | (5) |
|
4.4.1 Methods of parameter perturbation |
|
|
151 | (2) |
|
4.4.2 Factors related to the formation of CaMKII-NMDAR complex |
|
|
153 | (1) |
|
4.4.3 Discussion and summary |
|
|
154 | (2) |
|
4.5 Implication of the Autophosphorylation in LTP |
|
|
156 | (13) |
|
4.5.1 Computational experiments |
|
|
157 | (1) |
|
4.5.2 Role of the autophosphorylation related to CaMKII translocation |
|
|
157 | (2) |
|
4.5.3 Role of the autophosphorylation related to the formation of CaMKII-NMDAR complex |
|
|
159 | (4) |
|
4.5.4 Discussion and summary 163 References |
|
|
163 | (6) |
Chapter 5 Bidirectionality of Synaptic Pathways Related to LTP and LTD |
|
169 | (86) |
|
|
169 | (6) |
|
5.2 Background of the Key Modulators |
|
|
175 | (1) |
|
5.2.1 Proteins related to LTP |
|
|
175 | (1) |
|
5.2.2 Proteins related to LTD |
|
|
176 | (1) |
|
|
176 | (3) |
|
5.3.1 General assumptions |
|
|
176 | (1) |
|
5.3.2 Schematic diagram of MoNP |
|
|
177 | (2) |
|
|
179 | (22) |
|
5.4.1 Sub-model A-Ca2+/CaM complex formation |
|
|
179 | (1) |
|
5.4.2 Sub-model B-PKA activation pathway |
|
|
180 | (8) |
|
5.4.3 Sub-model C-PP2B activation pathway |
|
|
188 | (2) |
|
5.4.4 Sub-model D-PP1 activation pathway |
|
|
190 | (2) |
|
5.4.5 Sub-model E-CaMKII activation and autophosphorylation |
|
|
192 | (2) |
|
5.4.6 The complete model of MoNP |
|
|
194 | (7) |
|
5.5 Computational Procedures |
|
|
201 | (9) |
|
5.5.1 Simulating the sub-models |
|
|
201 | (1) |
|
|
202 | (1) |
|
5.5.3 Development of indices for the effects of kinases and phosphatases |
|
|
202 | (2) |
|
5.5.4 Theoretical conditions for the bidirectionality |
|
|
204 | (1) |
|
|
204 | (6) |
|
5.6 Parameter Estimation and Validation of MoNP |
|
|
210 | (12) |
|
5.6.1 Kinetic characteristics of essential modulators |
|
|
210 | (5) |
|
5.6.2 Parameter estimation |
|
|
215 | (2) |
|
5.6.3 Validating the sub-models |
|
|
217 | (3) |
|
5.6.4 Validation against previous models |
|
|
220 | (2) |
|
5.7 Evaluating the Sub-models |
|
|
222 | (4) |
|
5.7.1 Sub-model B: Switch behaviour of PKA |
|
|
223 | (1) |
|
5.7.2 Sub-model C: Two levels of PP2B activation |
|
|
224 | (1) |
|
5.7.3 Sub-model D: Competition on PP1 activation |
|
|
225 | (1) |
|
5.8 Understanding Synaptic Plasticity Based on deltaKBI and deltaI1P |
|
|
226 | (9) |
|
5.8.1 Effective time scales for the transient activation of modulators |
|
|
229 | (3) |
|
5.8.2 Computational study on removal of PKA by PP2B |
|
|
232 | (2) |
|
|
234 | (1) |
|
5.9 Significant Factors Revealed by GSA |
|
|
235 | (10) |
|
5.9.1 Summary of key findings from GSA |
|
|
236 | (1) |
|
5.9.2 Ca2+/CaM complex formation |
|
|
237 | (8) |
|
|
245 | (10) |
Chapter 6 Uncertainty Quantification of Models Related to Synaptic Plasticity |
|
255 | (24) |
|
6.1 A Summary of STM and ESTM Models |
|
|
258 | (3) |
|
|
261 | (1) |
|
6.3 Global Sensitivity Analysis (GSA) of STM and ESTM |
|
|
262 | (3) |
|
|
264 | (1) |
|
6.4 Interpretation of PRCC Results |
|
|
265 | (3) |
|
|
265 | (2) |
|
|
267 | (1) |
|
6.5 A Summary of the Possible Simplifications of STM based on GSA and Biological Reasoning |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
272 | (7) |
Chapter 7 Synaptic Plasticity in Dementia: Alzheimer's Disease and Role of Calcium |
|
279 | (44) |
|
|
279 | (3) |
|
7.2 NMDAR-Mediated Ca2+ Transients |
|
|
282 | (4) |
|
|
286 | (3) |
|
|
289 | (2) |
|
7.5 Dysregulation on NMDAR in AD |
|
|
291 | (2) |
|
7.6 Dysregulation of ER Ca2+ Handling in AD |
|
|
293 | (4) |
|
7.7 ER Alteration may Influence Abeta Production |
|
|
297 | (2) |
|
7.8 Modelling Ca2+ Dynamics in Dendritic Spines |
|
|
299 | (5) |
|
7.9 Modelling Intracellular Signalling Related to AD |
|
|
304 | (2) |
|
|
306 | (17) |
Index |
|
323 | |