Atnaujinkite slapukų nuostatas

El. knyga: Computer Aided Design and Manufacturing [Wiley Online]

(Nanjing University of Science and Technology in Nanjing, China), (Purdue University, IN, USA)
  • Formatas: 640 pages
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 19-Mar-2020
  • Leidėjas: Wiley-ASME Press
  • ISBN-10: 1119667887
  • ISBN-13: 9781119667889
Kitos knygos pagal šią temą:
  • Wiley Online
  • Kaina: 132,16 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formatas: 640 pages
  • Serija: Wiley-ASME Press Series
  • Išleidimo metai: 19-Mar-2020
  • Leidėjas: Wiley-ASME Press
  • ISBN-10: 1119667887
  • ISBN-13: 9781119667889
Kitos knygos pagal šią temą:

Broad coverage of digital product creation, from design to manufacture and process optimization

This book addresses the need to provide up-to-date coverage of current CAD/CAM usage and implementation. It covers, in one source, the entire design-to-manufacture process, reflecting the industry trend to further integrate CAD and CAM into a single, unified process. It also updates the computer aided design theory and methods in modern manufacturing systems and examines the most advanced computer-aided tools used in digital manufacturing.

Computer Aided Design and Manufacturing consists of three parts. The first part on Computer Aided Design (CAD) offers the chapters on Geometric Modelling; Knowledge Based Engineering; Platforming Technology; Reverse Engineering; and Motion Simulation. The second part on Computer Aided Manufacturing (CAM) covers Group Technology and Cellular Manufacturing; Computer Aided Fixture Design; Computer Aided Manufacturing; Simulation of Manufacturing Processes; and Computer Aided Design of Tools, Dies and Molds (TDM). The final part includes the chapters on Digital Manufacturing; Additive Manufacturing; and Design for Sustainability. The book is also featured for

  • being uniquely structured to classify and align engineering disciplines and computer aided technologies from the perspective of the design needs in whole product life cycles,
  • utilizing a comprehensive Solidworks package (add-ins, toolbox, and library) to showcase the most critical functionalities of modern computer aided tools, and
  • presenting real-world design projects and case studies so that readers can gain CAD and CAM problem-solving skills upon the CAD/CAM theory.

Computer Aided Design and Manufacturing is an ideal textbook for undergraduate and graduate students in mechanical engineering, manufacturing engineering, and industrial engineering. It can also be used as a technical reference for researchers and engineers in mechanical and manufacturing engineering or computer-aided technologies.

Series Preface xvii
Preface xix
About the Companion Website xxi
1 Computers in Manufacturing
1(34)
1.1 Introduction
1(6)
1.1.1 Importance of Manufacturing
1(1)
1.1.2 Scale and Complexity of Manufacturing
2(2)
1.1.3 Human Roles in Manufacturing
4(2)
1.1.4 Computers in Advanced Manufacturing
6(1)
1.2 Computer Aided Technologies (CATs)
7(3)
1.3 CATs for Engineering Designs
10(5)
1.3.1 Engineering Design in a Manufacturing System
10(1)
1.3.2 Importance of Engineering Design
10(2)
1.3.3 Types of Design Activities
12(1)
1.3.4 Human Versus Computers
13(1)
1.3.5 Human and Machine Interactions
14(1)
1.4 Architecture of Computer Aided Systems
15(5)
1.4.1 Hardware Components
15(2)
1.4.2 Computer Software Systems
17(1)
1.4.3 Servers, Networking, and Cloud Technologies
18(2)
1.5 Computer Aided Technologies in Manufacturing
20(2)
1.6 Limitation of the Existing Manufacturing Engineering Curriculum
22(2)
1.7 Course Framework for Digital Manufacturing
24(1)
1.8 Design of the CAD/CAM Course
25(3)
1.8.1 Existing Design of the CAD/CAM Course
26(1)
1.8.2 Customization of the CAD/CAM Course
27(1)
1.9 Summary
28(1)
1.10 Review Questions
29(6)
References
30(5)
Part I Computer Aided Design (CAD)
35(246)
2 Computer Aided Geometric Modelling
37(48)
2.1 Introduction
37(1)
2.2 Basic Elements in Geometry
38(15)
2.2.1 Coordinate Systems
39(1)
2.2.2 Reference Points, Lines, and Planes
40(3)
2.2.3 Coordinate Transformation of Points
43(1)
2.2.4 Coordinate Transformation of Objects
43(10)
2.3 Representation of Shapes
53(10)
2.3.1 Basic Data Structure
54(2)
2.3.2 Curvy Geometric Elements
56(7)
2.3.3 Euler--Poincare Law for Solids
63(1)
2.4 Basic Modelling Methods
63(11)
2.4.1 Wireframe Modelling
63(1)
2.4.2 Surface Modelling
64(1)
2.4.3 Boundary Surface Modelling (B-Rep)
65(2)
2.4.4 Space Decomposition
67(1)
2.4.5 Solid Modelling
68(1)
2.4.5.1 Solid Primitives
69(1)
2.4.5.2 Composition Operations
70(2)
2.4.5.3 CSG Modelling
72(1)
2.4.5.4 Modelling Procedure
72(1)
2.4.5.5 Data Structure of CSG Models
72(2)
2.5 Feature-Based Modelling with Design Intents
74(3)
2.6 Interactive Feature-Based Modelling Using CAD Tools
77(3)
2.7 Summary
80(1)
2.8 Modelling Problems
81(4)
References
83(2)
3 Knowledge-Based Engineering
85(40)
3.1 Generative Model in Engineering Design
85(1)
3.2 Knowledge-Based Engineering
85(2)
3.3 Parametric Modelling
87(14)
3.3.1 Define Basic Geometric Elements
89(1)
3.3.1.1 Parametrized Points
89(2)
3.3.1.2 Parametrized Lines
91(1)
3.3.1.3 Parametrized Surfaces
91(2)
3.3.1.4 Parametrized Curves
93(1)
3.3.1.5 Parametrized Surfaces
94(1)
3.3.2 Types of Parameters
95(4)
3.3.3 Geometric Constraints and Relations
99(1)
3.3.3.1 Dimensional Parameters
99(1)
3.3.3.2 Geometric Constraints
100(1)
3.4 Design Intents
101(2)
3.4.1 Default Location and Orientation of a Part
101(2)
3.4.2 First Sketch Plane
103(1)
3.5 Design Equations
103(2)
3.6 Design Tables
105(6)
3.7 Configurations as Part Properties
111(3)
3.8 Design Tables in Assembly Models
114(2)
3.9 Design Tables in Applications
116(1)
3.10 Design Templates
117(2)
3.11 Summary
119(1)
3.12 Design Problems
119(6)
References
122(3)
4 Platform Technologies
125(48)
4.1 Concurrent Engineering (CE)
125(5)
4.1.1 Brief History
125(1)
4.1.2 Needs of CE
125(3)
4.1.3 Challenges of CE Practice
128(1)
4.1.4 Concurrent Engineering (CE) and Continuous Improvement (CI)
128(2)
4.2 Platform Technologies
130(1)
4.3 Modularization
130(2)
4.4 Product Platforms
132(3)
4.5 Product Variants and Platform Technologies
135(3)
4.6 Fundamentals to Platform Technologies
138(4)
4.7 Design Procedure of Product Platforms
142(1)
4.8 Modularization of Products
142(7)
4.8.1 Classification of Functional Requirements (FRs)
143(1)
4.8.2 Module-Based Product Platforms
143(2)
4.8.3 Scale-Based Product Family
145(1)
4.8.4 Top-Down and Bottom-Up Approaches
146(3)
4.9 Platform Leveraging in CI
149(4)
4.10 Evaluation of Product Platforms
153(7)
4.10.1 Step
1. Representation of a Modularized Platform
155(1)
4.10.2 Step
2. Mapping a Modular Architecture for Robot Configurations
156(1)
4.10.3 Step
3. Determine Evaluation Criteria of a Product Platform
156(3)
4.10.4 Step
4. Evaluate Platform Solutions
159(1)
4.11 Computer Aided Tools (CAD) for Platform Technologies
160(5)
4.11.1 Modelling Techniques of Product Variants
163(1)
4.11.2 Design Toolboxes
163(1)
4.11.3 Custom Design Libraries
164(1)
4.12 Summary
165(1)
4.13 Design Projects
166(7)
References
169(4)
5 Computer Aided Reverse Engineering
173(46)
5.1 Introduction
173(2)
5.2 RE as Design Methodology
175(3)
5.3 RE Procedure
178(1)
5.4 Digital Modelling
179(9)
5.4.1 Types of Digital Models
180(1)
5.4.2 Surface Reconstruction
181(1)
5.4.3 Algorithms for Surface Reconstruction
181(1)
5.4.4 Limitations of Existing Algorithms
182(1)
5.4.5 Data Flow in Surface Reconstruction
183(1)
5.4.6 Surface Reconstruction Algorithm
184(2)
5.4.7 Implementation Examples
186(2)
5.5 Hardware Systems for Data Acquisition
188(13)
5.5.1 Classification of Hardware Systems
191(6)
5.5.2 Positioning of Data Acquisition Devices
197(2)
5.5.3 Control of Scanning Processes
199(1)
5.5.4 Available Hardware Systems
200(1)
5.6 Software Systems for Data Processing
201(5)
5.6.1 Data Filtering
201(3)
5.6.2 Data Registration and Integration
204(1)
5.6.3 Feature Detection
205(1)
5.6.4 Surface Reconstruction
205(1)
5.6.5 Surface Simplification
205(1)
5.6.6 Segmentation
206(1)
5.6.7 Available Software Tools
206(1)
5.7 Typical Manufacturing Applications
206(2)
5.8 Computer Aided Reverse Engineering (CARE)
208(5)
5.8.1 Recap to Convert Sensed Data into Polygonal Models
209(2)
5.8.2 ScanTo3D for Generation of Parametric Models
211(1)
5.8.3 RE of Assembled Products
212(1)
5.9 RE -- Trend of Development
213(1)
5.10 Summary
213(1)
5.11 Design Project
214(5)
References
215(4)
6 Computer Aided Machine Design
219(62)
6.1 Introduction
219(3)
6.2 General Functional Requirements (FRs) of Machines
222(1)
6.3 Fundamentals of Machine Design
223(7)
6.3.1 Link Types
223(1)
6.3.2 Joint Types and Degrees of Freedom (DoFs)
223(2)
6.3.3 Kinematic Chains
225(1)
6.3.4 Mobility of Mechanical Systems
226(4)
6.4 Kinematic Synthesis
230(3)
6.4.1 Type Synthesis
230(1)
6.4.2 Number Synthesis
230(2)
6.4.3 Dimensional Synthesis
232(1)
6.5 Kinematics
233(26)
6.5.1 Positions of Particles, Links, and Bodies in 2D and 3D Space
233(2)
6.5.2 Motions of Particles, Links, and Bodies
235(5)
6.5.3 Vector-Loop Method for Motion Analysis of a Plane Mechanism
240(4)
6.5.3.1 Kinematic Parameters and Variables
244(1)
6.5.3.2 Inverse Kinematics
245(1)
6.5.3.3 Direct Kinematics
246(1)
6.5.4 Kinematic Modelling Based on Denavit-Hartenberg (D-H) Parameters
246(2)
6.5.5 Jacobian Matrix for Velocity Relations
248(11)
6.6 Dynamic Modelling
259(10)
6.6.1 Inertia and Moments of Inertia
259(2)
6.6.2 Newton-Euler Formulation
261(2)
6.6.2.1 Inertia Force/Moment
263(1)
6.6.2.2 Force Equilibrium Equations
264(1)
6.6.2.3 Dynamic Model and Solution
265(1)
6.6.3 Lagrangian Method
266(3)
6.7 Kinematic and Dynamics Modelling in Virtual Design
269(9)
6.7.1 Motion Simulation
269(2)
6.7.2 Model Preparation
271(1)
6.7.3 Creation of a Simulation Model
271(3)
6.7.4 Define Motion Variables
274(1)
6.7.5 Setting Simulation Parameters
275(1)
6.7.6 Run Simulation and Visualize Motion
275(1)
6.7.7 Analyse Simulation Data
276(1)
6.7.8 Structural Simulation Using Motion Loads
277(1)
6.8 Summary
278(1)
6.9 Design Project
279(2)
References
279(2)
Part II Computer Aided Manufacturing (CAM)
281(216)
7 Group Technology and Cellular Manufacturing
283(48)
7.1 Introduction
283(1)
7.2 Manufacturing System and Components
283(7)
7.2.1 Machine Tools
287(2)
7.2.2 Material Handling Tools
289(1)
7.2.3 Fixtures
289(1)
7.2.4 Assembling Systems and Others
290(1)
7.3 Layouts of Manufacturing Systems
290(13)
7.3.1 Job Shops
290(1)
7.3.2 Flow Shops
291(1)
7.3.3 Project Shops
292(1)
7.3.4 Continuous Production
292(2)
7.3.5 Cellular Manufacturing
294(1)
7.3.6 Flexible Manufacturing System (FMS)
295(2)
7.3.7 Distributed Manufacturing and Virtual Manufacturing
297(5)
7.3.8 Hardware Reconfiguration Versus System Layout
302(1)
7.4 Group Technology (GT)
303(17)
7.4.1 Visual Inspection
304(1)
7.4.2 Product Classification and Coding
305(2)
7.4.2.1 Monocodes
307(1)
7.4.2.2 Polycodes
308(3)
7.4.2.3 Hybrid Codes
311(1)
7.4.2.4 Opitz Coding System
312(5)
7.4.3 Production Flow Analysis
317(3)
7.5 Cellular Manufacturing
320(5)
7.6 Summary
325(1)
1.1 Design Problems
326(5)
References
328(3)
8 Computer Aided Fixture Design
331(36)
8.1 Introduction
331(2)
8.2 Fixtures in Processes of Discrete Manufacturing
333(2)
8.3 Fixtures and Jigs
335(2)
8.4 Functional Requirements (FRs) of Fixtures
337(1)
8.5 Fundamentals of Fixture Design
338(6)
8.5.1 3-2-1 Principle
339(1)
8.5.2 Axioms for Geometric Control
339(2)
8.5.3 Axioms for Dimensional Control
341(1)
8.5.4 Axioms for Mechanical Control
341(1)
8.5.5 Fixturing Cylindrical Workpiece
342(1)
8.5.6 Kinematic and Dynamic Analysis
342(2)
8.6 Types and Elements of Fixture Systems
344(10)
8.6.1 Supports
345(1)
8.6.2 Types of Fixture Systems
345(2)
8.6.3 Locators
347(1)
8.6.4 Clamps
348(1)
8.6.5 Flexible Fixtures
348(1)
8.6.5.1 Adjustable Fixtures
349(1)
8.6.5.2 Modular Fixtures
350(2)
8.6.5.3 Phase-Change Work-Holding
352(1)
8.6.5.4 Conformable Fixtures
353(1)
8.6.5.5 Fixtureless Operations
353(1)
8.7 Procedure of Fixture Design
354(3)
8.8 Computer Aided Fixture Design
357(4)
8.8.1 Fixture Design Library
357(2)
8.8.2 Interference Detection
359(1)
8.8.3 Accessibility Analysis
360(1)
8.8.4 Analysis of Deformation and Accuracy
361(1)
8.9 Summary
361(1)
8.10 Design Projects
362(5)
References
363(4)
9 Computer Aided Manufacturing (CAM)
367(46)
9.1 Introduction
367(8)
9.1.1 Human and Machines in Manufacturing
368(3)
9.1.2 Automation in Manufacturing
371(1)
9.1.2.1 Hard Automation
371(1)
9.1.2.2 Programmable Automation
371(1)
9.1.2.3 Full Automation
372(1)
9.1.3 Automated Decision-Making Supports
372(1)
9.1.4 Automation in Manufacturing Execution Systems (MESs)
373(2)
9.2 Computer Aided Manufacturing (CAM)
375(3)
9.2.1 Numerically Controlled (NC) Machine Tools
375(1)
9.2.2 Industrial Robots
376(1)
9.2.3 Automated Storage and Retrieval Systems (ASRS)
376(1)
9.2.4 Flexible Fixture Systems (FFSs)
377(1)
9.2.5 Coordinate Measurement Machines (CMMs)
377(1)
9.2.6 Automated Material Handling Systems (AMHSs)
378(1)
9.3 Numerical Control (NC) Machine Tools
378(4)
9.3.1 Basics of Numerical Control (NC)
380(2)
9.4 Machining Processes
382(2)
9.5 Fundamentals of Machining Programming
384(14)
9.5.1 Procedure of Machining Programming
384(1)
9.5.2 World Axis Standards
385(2)
9.5.3 Default Coordinate Planes
387(3)
9.5.4 Part Reference Zero (PRZ)
390(1)
9.5.5 Absolute and Incremental Coordinates
390(2)
9.5.6 Types of Motion Paths
392(2)
9.5.7 Programming Methods
394(2)
9.5.8 Automatically Programmed Tools (APT)
396(2)
9.6 Computer Aided Manufacturing
398(7)
9.6.1 Main Tasks of CNC Programming
398(1)
9.6.2 Motion of Cutting Tools
398(1)
9.6.3 Algorithms in NC Programming
399(1)
9.6.4 Program Structure
400(1)
9.6.5 Programming Language G-Code
401(4)
9.7 Example of CAM Tool -- HSMWorks
405(2)
9.8 Summary
407(1)
9.9 Design Problems
408(1)
9.10 Design Project
409(4)
References
410(3)
10 Simulation of Manufacturing Processes
413(38)
10.1 Introduction
413(1)
10.2 Manufacturing Processes
413(3)
10.3 Shaping Processes
416(1)
10.4 Manufacturing Processes - Designing and Planning
417(1)
10.5 Procedure of Manufacturing Processes Planning
418(2)
10.6 Casting Processes
420(12)
10.6.1 Casting Materials and Products
420(2)
10.6.2 Fundamental of Casting Processes
422(1)
10.6.2.1 Energy Consumption
423(1)
10.6.2.2 Governing Equations in Pouring Operation
424(2)
10.6.2.3 Solidification Time
426(1)
10.6.2.4 Shrink Factors
427(2)
10.6.3 Design for Manufacturing (DFM) for Casting Processes
429(1)
10.6.4 Steps in Casting Processes
430(1)
10.6.5 Components in a Casting System
430(2)
10.6.6 Simulation of Casting Processes
432(1)
10.7 Injection Moulding Processes
432(7)
10.7.1 Injection Moulding Machine
433(1)
10.7.2 Steps in the Injection Moulding Process
434(1)
10.7.3 Temperature and Pressure for Moldability
435(1)
10.7.4 Procedure of the Injection Moulding System
436(1)
10.7.5 Other Design Considerations
437(2)
10.8 Mould Filling Analysis
439(4)
10.8.1 Mould Defects
440(3)
10.9 Mould Flow Analysis Tool -- SolidWorks Plastics
443(4)
10.10 Summary
447(1)
10.11 Design Project
447(4)
References
448(3)
11 Computer Aided Design of Tools, Dies, and Moulds (TDMs)
451(46)
11.1 Introduction
451(2)
11.2 Overview of Tools, Dies, and Industrial Moulds (TDMs)
453(1)
11.3 Roles of TDM Industry in Manufacturing
454(2)
11.4 General Requirements of TDM
456(3)
11.4.1 Cost Factors
457(1)
11.4.2 Lead-Time Factors
457(1)
11.4.3 Complexity
458(1)
11.4.4 Precision
458(1)
11.4.5 Quality
459(1)
11.4.6 Materials
459(1)
11.5 Tooling for Injection Moulding
459(1)
11.6 Design of Injection Moulding Systems
460(15)
11.6.1 Number of Cavities
460(2)
11.6.2 Runner Systems
462(1)
11.6.3 Geometry of Runners
462(2)
11.6.4 Layout of Runners
464(1)
11.6.5 Branched Runners
465(1)
11.6.6 Sprue Design
466(2)
11.6.7 Design of Gating System
468(3)
11.6.8 Design of Ejection System
471(1)
11.6.9 Design of the Cooling System
472(2)
11.6.10 Moulding Cycle Times
474(1)
11.7 Computer Aided Mould Design
475(8)
11.7.1 Main Components of Mould
475(1)
11.7.2 Mould Tool in SolidWorks
475(1)
11.7.3 Design Procedure
476(1)
11.7.4 Compensation of Shrinkage
477(1)
11.7.5 Draft Analysis
477(2)
11.7.6 Parting Line and Shut-off Planes
479(1)
11.7.7 Parting Surfaces
479(2)
11.7.8 Splitting Mould Components
481(1)
11.7.9 Assembly and Visualization of Moulds
481(2)
11.8 Computer Aided Mould Analysis
483(9)
11.8.1 Thermoformable Materials and Products
483(1)
11.8.2 Compression Moulding
483(1)
11.8.3 Simulation of Compression Moulding
484(3)
11.8.4 Predicating Elongation in SolidWorks
487(5)
11.9 Summary
492(1)
11.10 Design Projects
493(4)
References
493(4)
Part III System Integration
497(104)
12 Digital Manufacturing (DM)
499(36)
12.1 Introduction
499(1)
12.2 Historical Development
500(2)
12.3 Functional Requirements (FRs) of Digital Manufacturing
502(3)
12.3.1 Data Availability, Accessibility, and Information Transparency
502(1)
12.3.2 Integration
503(1)
12.3.3 High-Level Decision-Making Supports
503(1)
12.3.4 Decentralization
504(1)
12.3.5 Reconfigurability, Modularity, and Composability
504(1)
12.3.6 Resiliency
504(1)
12.3.7 Sustainability
505(1)
12.3.8 Evaluation Metrics
505(1)
12.4 System Entropy and Complexity
505(2)
12.5 System Architecture
507(10)
12.5.1 NIST Enterprise Architecture
507(1)
12.5.2 DM Enterprise Architecture
508(3)
12.5.3 Digital Technologies in Different Domains
511(1)
12.5.4 Characteristics of Internet of Things (IoT) Infrastructure
512(4)
12.5.5 Lifecycle and Evolution of EA
516(1)
12.6 Hardware Solutions
517(1)
12.7 Big Data Analytics (BDA)
518(4)
12.7.1 Big Data in DM
519(2)
12.7.2 Big Data Analytics (BDA)
521(1)
12.7.3 Big Data Analytics (BDA) for Digital Manufacturing
521(1)
12.8 Computer Simulation in DM -- Simio
522(6)
12.8.1 Modelling Paradigms
523(1)
12.8.2 Object Types and Classes
523(2)
12.8.3 Intelligence -- Objects, Events, Logic, Processes, Process Steps, and Elements
525(1)
12.8.4 Case Study of Modelling and Simulation in Simio
526(2)
12.9 Summary
528(3)
12.10 Design Projects
531(4)
References
532(3)
13 Direct and Additive Manufacturing
535(28)
13.1 Introduction
535(1)
13.2 Overview of Additive Manufacturing
536(6)
13.2.1 Historical Development
536(1)
13.2.2 Applications
536(4)
13.2.3 Advantages and Disadvantages
540(2)
13.3 Types of AM Techniques
542(7)
13.3.1 Vat Photo-Polymerization
543(1)
13.3.2 Powder Bed Fusion
544(1)
13.3.3 Binder Jetting
545(1)
13.3.4 Material Jetting
545(1)
13.3.5 Material Extrusion
546(1)
13.3.6 Sheet Lamination
547(1)
13.3.7 Directed Energy Deposition
547(2)
13.4 AM Processes
549(5)
13.4.1 Preparation of CAD Models
550(1)
13.4.2 Preparation of Tessellated Models
550(1)
13.4.3 Slicing Planning and Visualization
551(1)
13.4.4 Machine Setups
552(1)
13.4.5 Building Process
552(1)
13.4.6 Post-Processing
553(1)
13.4.7 Verification and Validation
554(1)
13.5 Design for Additive Manufacturing (DfAM)
554(5)
13.5.1 Selective Materials and AM Processes
555(1)
13.5.2 Considerations of Adopting AM Technologies
555(2)
13.5.3 Part Features
557(1)
13.5.4 Support Structures
557(1)
13.5.5 Process Parameters
558(1)
13.6 Summary
559(1)
13.7 Design Project
560(3)
References
560(3)
14 Design for Sustainability (D4S)
563(38)
14.1 Introduction
563(1)
14.2 Sustainable Manufacturing
563(2)
14.3 Drivers for Sustainability
565(7)
14.3.1 Shortage of Natural Resources
566(2)
14.3.2 Population Increase
568(1)
14.3.3 Global Warming
569(2)
14.3.4 Pollution
571(1)
14.3.5 Globalized Economy
571(1)
14.4 Manufacturing and Sustainability
572(3)
14.4.1 Natural Resources for Manufacturing
572(1)
14.4.2 Population Increase and Manufacturing
573(1)
14.4.3 Global Warming and Manufacturing
574(1)
14.4.4 Pollution and Manufacturing
574(1)
14.4.5 Manufacturing in a Globalized Economy
574(1)
14.5 Metrics for Sustainable Manufacturing
575(5)
14.6 Reconfigurability for Sustainability
580(2)
14.7 Lean Production for Sustainability
582(2)
14.8 Lifecycle Assessment (LCA) and Design for Sustainability (D4S)
584(1)
14.9 Continuous Improvement for Sustainability
585(1)
14.10 Main Environmental Impact Factors
585(1)
14.10.1 Carbon Footprint
586(1)
14.10.2 Total Energy
586(1)
14.10.3 Air Acidification
586(1)
14.10.4 Water Eutrophication
586(1)
14.11 Computer Aided Tools -- SolidWorks Sustainability
586(8)
14.11.1 Material Library
587(1)
14.11.2 Manufacturing Processes and Regions
588(3)
14.11.3 Transportation and Use
591(1)
14.11.4 Material Comparison Tool
592(2)
14.11.5 Costing Analysis in SolidWorks
594(1)
14.12 Summary
594(2)
14.13 Design Project
596(5)
References
596(5)
Index 601
Zhuming Bi, PhD, is a Professor in the Department of Civil and Mechanical Engineering at Purdue University in Fort Wayne, Indiana, USA. He has over 30 years of experience in Computer Aided Design and Manufacturing (CAD/CAM).

Xiaoqin Wang, PhD, is an Associate Professor in the School of Mechanical Engineering at Nanjing University of Science and Technology in Nanjing, China. Her research background is in Computer Aided Design, Dynamics, Vibration Impact, and Noise Control. She has been teaching computer-aided design and drawing for 20 years.