Atnaujinkite slapukų nuostatas

El. knyga: Conceptual Shape Optimization of Entry Vehicles: Applied to Capsules and Winged Fuselage Vehicles

  • Formatas: EPUB+DRM
  • Serija: Springer Aerospace Technology
  • Išleidimo metai: 09-Dec-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319460550
  • Formatas: EPUB+DRM
  • Serija: Springer Aerospace Technology
  • Išleidimo metai: 09-Dec-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319460550

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Applied to capsules and winged fuselage vehicles

This book covers the parameterization of entry capsules, including Apollo capsules and planetary probes, and winged entry vehicles such as the Space Shuttle and lifting bodies. The aerodynamic modelling is based on a variety of panel methods that take shadowing into account, and it has been validated with flight and wind tunnel data of Apollo and the Space Shuttle. The shape optimization is combined with constrained trajectory analysis, and the multi-objective approach provides the engineer with a Pareto front of optimal shapes.

The method detailed in Conceptual Shape Optimization of Entry Vehicles is straightforward, and the output gives the engineer insight in the effect of shape variations on trajectory performance. All applied models and algorithms used are explained in detail, allowing for reconstructing the design tool to the researcher’s requirements.

Conceptual Shape Optimization of Entry Vehicles will be of interest to both researchers and graduate students in the field of aerospace engineering, and to practitioners within the aerospace industry.

1 Introduction
1(18)
1.1 Re-entry Missions
2(11)
1.1.1 Re-entry in the 20th Century
2(6)
1.1.2 Re-entry in the 21st Century
8(5)
1.2 Shape Optimization
13(3)
1.3 Overview
16(3)
2 Flight Mechanics
19(22)
2.1 Flight Environment
19(5)
2.1.1 Central Body Shape
20(1)
2.1.2 Gravity
21(1)
2.1.3 Atmosphere
22(2)
2.2 Equations of Motion
24(9)
2.2.1 Reference Frames
24(4)
2.2.2 Forces
28(2)
2.2.3 Entry Equations
30(3)
2.3 Guidance Approach
33(8)
2.3.1 Capsule
33(2)
2.3.2 Winged Vehicle
35(2)
2.3.3 Vehicle Stability
37(4)
3 Aerothermodynamics
41(32)
3.1 Basic Concepts
41(9)
3.1.1 Thermodynamic Properties
42(3)
3.1.2 Characteristics of Super/Hypersonic Flow
45(4)
3.1.3 Viscosity
49(1)
3.2 Aerodynamic Loads
50(3)
3.3 Local-Inclination Methods
53(11)
3.3.1 Description of Methods
54(6)
3.3.2 Method Selection
60(4)
3.4 Heat Transfer
64(9)
3.4.1 Convective Heat Transfer
65(3)
3.4.2 Capsule Considerations
68(5)
4 Numerical Interpolation
73(14)
4.1 Basic Concepts
73(4)
4.1.1 Continuity and Convexity
74(1)
4.1.2 Linear Interpolation
75(1)
4.1.3 Bilinear Interpolation
76(1)
4.2 Cubic Spline Curves
77(7)
4.2.1 Fundamental Concepts
77(2)
4.2.2 Bezier and Hermite Splines
79(3)
4.2.3 Avoiding Self-intersection and Concavity
82(2)
4.3 Hermite-Spline Surfaces
84(3)
5 Vehicle Geometry
87(26)
5.1 Analytical Parameterization
88(4)
5.2 Winged Vehicle Parameterization
92(17)
5.2.1 Fuselage
92(8)
5.2.2 Wings
100(5)
5.2.3 Fuselage-Wing Interface
105(2)
5.2.4 Mass Model
107(2)
5.3 Meshed Surfaces
109(4)
6 Optimization
113(16)
6.1 General Concepts
113(3)
6.1.1 Problem Statement
113(1)
6.1.2 Multi-objective Optimality
114(2)
6.2 Particle-Swarm Optimization
116(5)
6.2.1 Method Overview
117(1)
6.2.2 Handling of Constraints
118(1)
6.2.3 Multi-objective PSO
118(3)
6.3 Shape Optimization
121(8)
6.3.1 Performance Criteria
121(2)
6.3.2 Constraints
123(6)
7 Simulator Design
129(22)
7.1 Simulation Code
129(5)
7.2 Model Validation
134(13)
7.2.1 Aerodynamics
135(7)
7.2.2 Vehicle Trajectories
142(5)
7.3 Simulation Settings
147(4)
7.3.1 General
147(1)
7.3.2 Capsule
148(1)
7.3.3 Winged Vehicle
149(2)
8 Shape Analysis -- Capsule
151(30)
8.1 Monte Carlo Analysis
151(8)
8.2 Optimization
159(18)
8.2.1 Two-Dimensional Analysis
160(14)
8.2.2 Three-Dimensional Optimization
174(3)
8.3 Concluding Remarks
177(4)
9 Shape Analysis -- Winged Vehicle
181(44)
9.1 Monte Carlo Analysis
181(8)
9.2 Optimization Results
189(32)
9.2.1 Baseline Optimization
189(20)
9.2.2 Pitch-Stable Optimization
209(5)
9.2.3 Heat-Rate Tracking Optimization
214(7)
9.3 Concluding Remarks
221(4)
Appendix A Relative Viscous-Force Approximation 225(4)
Appendix B Winged-Vehicle Shape Generation Example 229(22)
Appendix C Optimal Capsule Shapes 251(6)
Appendix D Optimal Winged-Vehicle Shapes 257(10)
References 267(6)
Index 273
Dominic Dirkx works as a research associate in the field of analysis and simulation of planetary mission tracking. He has extensive experience on the design and implementation of simulation software for aerospace mission dynamics and design. His research interests include re-entry dynamics, trajectory optimization, interplanetary tracking, relativistic geodesy and modular simulation software design. He has worked on the shape optimization of entry vehicles, the conceptual design of planetary missions and the analysis of interplanetary laser ranging as a novel method of orbit determination for planetary missions.

Erwin Mooij works as an assistant professor in the field of launch and re-entry systems, amongst others teaching such course to first-year MSc students. His research interests include re-entry systems, trajectory optimization, guidance and control system design, and design methods and data-analysis techniques. Over the years he has worked on several re-entry-system projects, aimed at finding the best shape for doing hypersonic flight experiments. Before coming to work for Delft University of Technology, he worked for Dutch Space (currently: Airbus Defence and Space Netherlands). His tasks included, amongst others, system engineering for the thermal-protection system of the EXPERT entry vehicle (ESA project), as well as the shape-optimization of an earlier configuration of EXPERT.