Atnaujinkite slapukų nuostatas

El. knyga: Concise Introduction to the Statistical Physics of Complex Systems

  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Complexity 2
  • Išleidimo metai: 28-Sep-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642239236
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: SpringerBriefs in Complexity 2
  • Išleidimo metai: 28-Sep-2011
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642239236
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics. Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting 'entities', and on the other to predict the macroscopic (or collective) behavior of the system considered from the microscopic laws ruling the dynamics of the individual 'entities'. These two goals are, to some extent, also shared by what is nowadays called 'complex systems science' and for these reasons, systems studied in the framework of statistical physics may be considered as among the simplest examples of complex systems—allowing in addition a rather well developed mathematical treatment.

Recenzijos

From the reviews: "The well-written 77 pages long book is based on introductory lectures given by the author at summer schools on complex systems for participants of different branches with an interest in complex system modeling and on extended lectures given for master courses at universities. ... The monograph is a good introduction to basic concepts of statistical physics and complex systems for students and researchers with an interest in complex systems in other fields ... ." (Georg Hebermehl, Zentralblatt MATH, Vol. 1237, 2012) "This short expository text intends to convey the basic ideas connecting statistical mechanics (microscopic level) with thermodynamics (macroscopic level). Its primary audience is composed of researchers coming from different origins and working in the area of complex systems. ... Although there are more exhaustive and mathematically rigorous monographs treating various topics covered here (references are indicated below), this short text remains very refreshing for the mathematician." (Dimitri Petritis, Mathematical Reviews, Issue 2012 k)

1 Equilibrium Statistical Physics
1(32)
1.1 Microscopic Dynamics of a Physical System
1(5)
1.1.1 A Particle Attached to a Spring
1(4)
1.1.2 Many-Particle System
5(1)
1.1.3 Case of Discrete Variables: Spin Models
5(1)
1.2 Statistical Description of an Isolated System at Equilibrium
6(6)
1.2.1 Notion of Statistical Description: A Toy Model
6(1)
1.2.2 Fundamental Postulate of Equilibrium Statistical Physics
7(1)
1.2.3 Computation of Q(E) and S(E): Some Simple Examples
8(2)
1.2.4 Distribution of Energy Over Subsystems and Statistical Temperature
10(2)
1.3 Equilibrium System in Contact with its Environment
12(6)
1.3.1 Exchanges of Energy
12(3)
1.3.2 Canonical Entropy
15(2)
1.3.3 Exchanges of Particles with a Reservoir: The Grand-Canonical Ensemble
17(1)
1.4 Phase Transitions
18(9)
1.4.1 Example of the Ising Model
18(1)
1.4.2 Ising Model in Fully Connected Geometry
18(3)
1.4.3 Ising Model with Finite Connectivity
21(1)
1.4.4 Renormalization Group Approach: A Brief Introduction
22(5)
1.5 Disordered Systems and Glass Transition
27(6)
1.5.1 Disorder in Complex Systems: From Social Sciences to Spin-Glasses
27(1)
1.5.2 Theoretical Spin-Glass Models
28(1)
1.5.3 The Simplest Disordered System: The Random Energy Model
28(3)
References
31(2)
2 Non-Stationary Dynamics and Stochastic Formalism
33(26)
2.1 Markovian Stochastic Processes and Master Equation
33(8)
2.1.1 Definition of Markovian Stochastic Processes
33(2)
2.1.2 Master Equation and Detailed Balance
35(2)
2.1.3 Dynamical Increase of the Entropy
37(1)
2.1.4 A Simple Example: The One-Dimensional Random Walk
38(3)
2.2 Langevin and Fokker-Planck Equations
41(8)
2.2.1 Phenomenological Approach to the Langevin Equation
41(4)
2.2.2 Relation to Random Walks
45(2)
2.2.3 Fokker-Planck Equation
47(2)
2.3 Anomalous Diffusion and Physical Aging
49(10)
2.3.1 Generalized Central Limit Theorem
49(3)
2.3.2 Anomalous Diffusion
52(2)
2.3.3 Aging Dynamics and Trap Models
54(3)
References
57(2)
3 Statistical Physics of Interacting Macroscopic "Entities"
59(1)
3.1 Dynamics of Residential Moves
60(5)
3.1.1 A Simplified Version of the Schelling Model
61(1)
3.1.2 Equilibrium Configurations of the Model
61(2)
3.1.3 Condition for Phase Separation
63(2)
3.2 Condensation Transition
65(2)
3.2.1 Zero Range Process: Definition and Exact Solution
66(1)
3.2.2 Maximal Density and Condensation Phenomenon
66(1)
3.3 Synchronization Transition
67(5)
3.3.1 The Kuramoto Model of Coupled Oscillators
68(2)
3.3.2 Synchronized Steady State
70(2)
3.4 Collective Motion of Active Particles
72(1)
3.4.1 Definition of the Model
73(1)
3.4.2 Description Through a Boltzmann Equation
73(1)
3.4.3 Hydrodynamic Equations and Phase Diagram
74(3)
References
77