Atnaujinkite slapukų nuostatas

El. knyga: Constrained Willmore Surfaces: Symmetries of a Mobius Invariant Integrable System

(Universidade Nova de Lisboa, Portugal)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

From Bäcklund to Darboux, this monograph presents a comprehensive journey through the transformation theory of constrained Willmore surfaces, a topic of great importance in modern differential geometry and, in particular, in the field of integrable systems in Riemannian geometry. The first book on this topic, it discusses in detail a spectral deformation, Bäcklund transformations and Darboux transformations, and proves that all these transformations preserve the existence of a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, and bridging the gap between different approaches to the subject, classical and modern. Clearly written with extensive references, chapter introductions and self-contained accounts of the core topics, it is suitable for newcomers to the theory of constrained Wilmore surfaces. Many detailed computations and new results unavailable elsewhere in the literature make it also an appealing reference for experts.

Daugiau informacijos

From Bäcklund to Darboux: a comprehensive journey through the transformation theory of constrained Willmore surfaces, with applications to constant mean curvature surfaces.
Preface xi
Introduction 1(15)
1 A Bundle Approach to Conformal Surfaces in Space-Forms
16(15)
1.1 Space-Forms in the Conformal Projectivized Light Cone
19(3)
1.2 Conformal Surfaces in the Light Cone Picture
22(9)
1.2.1 Oriented Conformal Surfaces: Generalities
22(6)
1.2.2 Conformal Immersions of Surfaces into the Projectivized Light Cone
28(3)
2 The Mean Curvature Sphere Congruence
31(14)
2.1 Mean Curvature and Central Sphere Congruence
34(4)
2.2 The Normal Bundle to the Central Sphere Congruence
38(2)
2.3 Conformal Gauss Map and Gauss-Codazzi-Ricci Equations
40(5)
2.3.1 The Exterior Power ˆ2Rn+1,1 = 0 (Rn+1,1)
40(3)
2.3.2 The Gauss-Ricci and Codazzi Equations
43(2)
3 Surfaces under Change of Flat Metric Connection
45(4)
4 Willmore Surfaces
49(24)
4.1 The Willmore Functional
50(6)
4.2 Willmore Surfaces: Definition
56(1)
4.3 Willmore Energy vs. Dirichlet Energy
57(1)
4.4 Willmore Surfaces and Harmonicity
58(7)
4.5 The Euler-Lagrange Willmore Surface Equation
65(4)
4.6 Willmore Surfaces under Change of Flat Metric Connection
69(1)
4.7 Spectral Deformation of Willmore Surfaces
69(4)
5 The Euler-Lagrange Constrained Willmore Surface Equation
73(14)
5.1 Constrained Willmore Surfaces: Definition
73(2)
5.2 The Hopf Differential and the Schwarzian Derivative
75(1)
5.3 The Euler-Lagrange Constrained Willmore Surface Equation
76(9)
5.4 Constrained Willmore Surfaces: An Equation on the Hopf Differential and the Schwarzian Derivative
85(2)
6 Transformations of Generalized Harmonic Bundles and Constrained Willmore Surfaces
87(48)
6.1 Constrained Harmonic Bundles
89(2)
6.2 Constrained Harmonicity: A Zero-Curvature Characterization
91(2)
6.3 Constrained Willmore Surfaces and Constrained Harmonicity
93(1)
6.4 Constrained Willmore Surfaces: A Zero-Curvature Characterization
93(1)
6.5 Spectral Deformation of Constrained Harmonic Bundles
94(2)
6.6 Complexified Constrained Willmore Surfaces
96(5)
6.7 Constrained Willmore Surfaces under Change of Flat Metric Connection
101(1)
6.8 Spectral Deformation of Constrained Willmore Surfaces
102(1)
6.9 Real Spectral Deformation of Constrained Willmore Surfaces
103(3)
6.10 Dressing Action
106(7)
6.11 Backlund Transformation of Constrained Harmonic Bundles and Constrained Willmore Surfaces
113(11)
6.12 Real Backlund Transformation of Constrained Harmonic Bundles and Constrained Willmore Surfaces
124(8)
6.13 Spectral Deformation vs. Backlund Transformation
132(3)
7 Constrained Willmore Surfaces with a Conserved Quantity
135(10)
7.1 Conserved Quantities of Constrained Willmore Surfaces
136(2)
7.2 Constrained Willmore Surfaces with a Conserved Quantity: Examples
138(3)
7.2.1 The Special Case of Codimension 1: CMC Surfaces in 3-Dimensional Space-Forms
138(1)
7.2.2 A Special Case in Codimension 2: Holomorphic Mean Curvature Vector Surfaces in 4-Dimensional Space-Forms
139(2)
7.3 Conserved Quantities under Constrained Willmore Transformation
141(4)
7.3.1 Conserved Quantities under Constrained Willmore Spectral Deformation
142(1)
7.3.2 Conserved Quantities under Constrained Willmore Backlund Transformation
142(3)
8 Constrained Willmore Surfaces and the Isothermic Surface Condition
145(38)
8.1 Isothermic Surfaces
147(10)
8.1.1 Isothermic Surfaces: Definition
148(2)
8.1.2 Isothermic Surfaces and Hopf Differential
150(1)
8.1.3 Isothermic Surfaces: A Zero-Curvature Characterization
151(1)
8.1.4 Transformations of Isothermic Surfaces
152(3)
8.1.5 Isothermic Surfaces under Constrained Willmore Transformation
155(1)
8.1.6 Isothermic Surface Condition and Uniqueness of Multiplier
156(1)
8.2 Constant Mean Curvature Surfaces in 3-Dimensional Space-Forms
157(26)
8.2.1 CMC Surfaces as Isothermic Constrained Willmore Surfaces with a Conserved Quantity
160(7)
8.2.2 CMC Surfaces: An Equation on the Hopf Differential and the Schwarzian Derivative
167(1)
8.2.3 CMC Surfaces at the Intersection of Spectral Deformations
168(9)
8.2.4 CMC Surfaces under Constrained Willmore Backlund Transformation
177(4)
8.2.5 CMC Surfaces at the Intersection of Integrable Geometries
181(2)
9 The Special Case of Surfaces in 4-Space
183(52)
9.1 Surfaces in S4 = HP1
183(13)
9.1.1 Linear Algebra
184(6)
9.1.2 The Mean Curvature Sphere Congruence
190(3)
9.1.3 Mean Curvature Sphere Congruence and Central Sphere Congruence
193(3)
9.2 Constrained Willmore Surfaces in 4-Space
196(4)
9.3 Transformations of Constrained Willmore Surfaces in 4-Space
200(35)
9.3.1 Untwisted Backlund Transformation of Constrained Willmore Surfaces in 4-Space
201(13)
9.3.2 Twisted vs. Untwisted Backlund Transformation of Constrained Willmore Surfaces in 4-Space
214(3)
9.3.3 Darboux Transformation of Constrained Willmore Surfaces in 4-Space
217(6)
9.3.4 Backlund Transformation vs. Darboux Transformation of Constrained Willmore Surfaces in 4-Space
223(12)
Appendix A Hopf Differential and Umbilics 235(2)
Appendix B Twisted vs. Untwisted Backlund Transformation Parameters 237(3)
References 240(5)
Index 245
Įurea Casinhas Quintino is an Assistant Professor at NOVA University Lisbon and a member of CMAFcIO Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences of the University of Lisbon. Her research interests focus on integrable systems in Riemannian geometry.