Atnaujinkite slapukų nuostatas

El. knyga: Constraint Handling in Cohort Intelligence Algorithm

(Deemed University, Pale, India), (MIT World Peace University, Pune, India)
  • Formatas: 206 pages
  • Serija: Advances in Metaheuristics
  • Išleidimo metai: 26-Dec-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000520514
  • Formatas: 206 pages
  • Serija: Advances in Metaheuristics
  • Išleidimo metai: 26-Dec-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000520514

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Mechanical Engineering domain problems are generally complex, consisting of different design variables and constraints. These problems may not be solved using gradient-based optimization techniques. The stochastic nature-inspired optimization techniques have been proposed in this book to efficiently handle the complex problems. The nature-inspired algorithms are classified as bio-inspired, swarm, and physics/chemical-based algorithms.

Socio-inspired is one of the subdomains of bio-inspired algorithms, and Cohort Intelligence (CI) models the social tendencies of learning candidates with an inherent goal to achieve the best possible position. In this book, CI is investigated by solving ten discrete variable truss structural problems, eleven mixed variable design engineering problems, seventeen linear and nonlinear constrained test problems and two real-world applications from manufacturing domain. Static Penalty Function (SPF) is also adopted to handle the linear and nonlinear constraints, and limitations in CI and SPF approaches are examined.

Constraint Handling in Cohort Intelligence Algorithm is a valuable reference to practitioners working in the industry as well as to students and researchers in the area of optimization methods.



This is a valuable reference to practitioners, students and researchers in the area of optimization methods. CI is investigated by solving discrete variable truss structural problems, mixed variable design engineering problems, linear and nonlinear constrained test problems and real-world applications from the manufacturing domain.

Chapter 1: Introduction to Metaheuristic Algorithms

Chapter 2: Literature Survey on Nature Inspired Optimisation Methodologies
and Constraint Handling

Chapter 3: Cohort Intelligence (CI) Using the Static Penalty Function (SPF)
Approach

Chapter 4: Constraint Handling Using the Self-Adaptive Penalty Function
(SAPF) Approach

Chapter 5: Hybridization of Cohort Intelligence with Colliding Bodies
Optimisation

Chapter 6: Validation of CI-SPF, CI-SAPF and CI-SAPF-CBO for Solving
Discrete/Integer and Mixed Variable Problems

Chapter 7: Solution to Real-World Applications

Chapter 8: Conclusions and Recommendations

Appendix: Problem Statements for the Truss Structure, Design Engineering,
Linear and Nonlinear Programming and Manufacturing Problems

Index
Ishaan R. Kale is a researcher for the Optimization and Agent Technology Research (OAT Research) Lab.

Anand J. Kulkarni is an Associate Professor at the Institute of Artificial Intelligence, MIT World Peace University, India.