Atnaujinkite slapukų nuostatas

El. knyga: Control and State Estimation for Dynamical Network Systems with Complex Samplings

, (Hangzhou Normal University, Hangzhou, China), (Brunel Uni, UK)
  • Formatas: 306 pages
  • Išleidimo metai: 14-Sep-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000635454
  • Formatas: 306 pages
  • Išleidimo metai: 14-Sep-2022
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000635454

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion. Further, it explains the effects from the active sampling fashion, i.e., event-based sampling is examined on the control/estimation performance, and novel design technologies are proposed for controllers/estimators. Simulation results are provided for better understanding of the proposed control/filtering methods. By drawing on a variety of theories and methodologies such as Lyapunov function, linear matrix inequalities, and Kalman theory, su cient conditions are derived for guaranteeing the existence of the desired controllers and estimators, which are parameterized according to certain matrix inequalities or recursive matrix equations.

  • Covers recent advances of control and state estimation for dynamical network systems with complex samplings from the engineering perspective
  • Systematically introduces the complex sampling concept, methods, and application for the control and state estimation
  • Presents unified framework for control and state estimation problems of dynamical network systems with complex samplings
  • Exploits a set of the latest techniques such as linear matrix inequality approach, Vandermonde matrix approach, and trace derivation approach
  • Explains event-triggered multi-rate fusion estimator, resilient distributed sampled-data estimator with predetermined specifications

This book is aimed at researchers, professionals, and graduate students in control engineering and signal processing.



This book focusses on the control and state estimation problems for dynamical network systems with complex samplings subject to various network-induced phenomena. It includes a series of control and state estimation problems tackled under the passive sampling fashion, effects from the active sampling fashion with simulation results.
1. Introduction
2. Stabilization and Control under Noisy Sampling Intervals
3. Distributed State Estimation over Sensor Networks with Nonuniform Samplings
4. Event-Triggered Control for Switched Systems
5. Event-Triggered H8 State Estimation for State-Saturated Systems
6. Event-Triggered State Estimation for Discrete-Time Neural Networks
7. Event-Triggered Fusion Estimation for Multi-Rate Systems
8. Synchronization Control under Dynamic Event-Triggered Mechanisms
9. Filtering or State Estimation under Dynamic Event-Triggered Mechanisms
10. Conclusions and Future Work