Atnaujinkite slapukų nuostatas

El. knyga: Convexity and its Applications in Discrete and Continuous Optimization

(Johns Hopkins University)
  • Formatas: PDF+DRM
  • Išleidimo metai: 30-Jan-2025
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108949996
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 30-Jan-2025
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108949996
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Using a pedagogical, unified approach, this book presents both the analytic and combinatorial aspects of convexity and its applications in optimization. On the structural side, this is done via an exposition of classical convex analysis and geometry, along with polyhedral theory and geometry of numbers. On the algorithmic/optimization side, this is done by the first ever exposition of the theory of general mixed-integer convex optimization in a textbook setting. Classical continuous convex optimization and pure integer convex optimization are presented as special cases, without compromising on the depth of either of these areas. For this purpose, several new developments from the past decade are presented for the first time outside technical research articles: discrete Helly numbers, new insights into sublinear functions, and best known bounds on the information and algorithmic complexity of mixed-integer convex optimization. Pedagogical explanations and more than 300 exercises make this book ideal for students and researchers.

This rigorous introduction to the fundamental ideas of convexity and their use in optimization offers a unifying approach for both discrete and continuous applications. Students and researchers in optimization, operations research, computer science, and applied mathematics will appreciate the book's 300+ exercises and coverage of new developments.

Recenzijos

'Written by one of the most brilliant researchers in the field, this book provides an elegant, rigorous and original presentation of the theory of convexity, describing in a unified way its use in continuous and discrete optimization, and also covering some very recent advancements in these areas.' Marco Di Summa, University of Padua 'Convexity is central to most optimization algorithms. This book brings together classical and new developments at the interface between these two vibrant areas of mathematics. It is an essential reference for scholars in optimization. The numerous exercises make it an ideal textbook at the graduate and upper undergraduate levels.' Gérard Cornuéjols, Carnegie Mellon University

Daugiau informacijos

A unified introduction to continuous and discrete aspects of convexity, including recent developments in optimization and 300+ exercises.
1. Preliminaries; Part I. Structural Aspects:
2. Convex sets;
3. Convex functions;
4. Geometry of numbers; Part II. Optimization:
5. Ingredients of mathematical optimization;
6. Complexity of convex optimization with integer variables;
7. Certificates and duality; Hints to selected exercises; References; Index.
Amitabh Basu is Professor of Applied Mathematics and Statistics at Johns Hopkins University. He has received the NSF CAREER award and the Egon Balas Prize from the INFORMS Optimization Society. He serves on the editorial boards of 'Mathematics of Operations Research,' 'Mathematical Programming,' 'SIAM Journal on Optimization,' and the 'MOS-SIAM Series on Optimization.'