Atnaujinkite slapukų nuostatas

El. knyga: Cosmic Rays and Particle Physics

(Karlsruhe Institute of Technology, Germany), (Technische Universität München), (University of Delaware)
  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Jun-2016
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316598917
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Jun-2016
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316598917
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fully updated for the second edition, this book introduces the growing and dynamic field of particle astrophysics. It provides an overview of high-energy nuclei, photons and neutrinos, including their origins, their propagation in the cosmos, their detection on Earth and their relation to each other. Coverage is expanded to include new content on high energy physics, the propagation of protons and nuclei in cosmic background radiation, neutrino astronomy, high-energy and ultra-high-energy cosmic rays, sources and acceleration mechanisms, and atmospheric muons and neutrinos. Readers are able to master the fundamentals of particle astrophysics within the context of the most recent developments in the field. This book will benefit graduate students and established researchers alike, equipping them with the knowledge and tools needed to design and interpret their own experiments and, ultimately, to address a number of questions concerning the nature and origins of cosmic particles that have arisen in recent research.

Recenzijos

'With more than 25 years since the first edition, this second edition has been revised and extended by about 150 pages to account for the progress and important discoveries made in the field since then. These comprise the famous neutrino oscillations, the cutoff in ultrahigh-energy cosmic ray spectra, Tera-electronvolt gamma rays from galactic sources and the unexpected excess of high-energy positrons and astrophysical neutrinos. The text is well written and presents all material with mathematical rigour and a large number of references to scientific publications The text is accompanied by numerous black-and-white figures, mainly of spectra. It has an appendix with additional material and a helpful index. It can be recommended mainly for graduate students and researchers from both theory and experiment who want a thorough introduction to the phenomenology and to the theoretical background of cosmic ray physics at the junction of particle physics and astronomy.' Manuel Vogel, Contemporary Physics

Daugiau informacijos

Incorporating recent discoveries in particle astrophysics, this updated edition provides an overview of high-energy cosmic rays, gamma-ray and neutrino astronomy.
Preface to the first edition xi
Preface to the second edition xiii
1 Cosmic rays 1(11)
1.1 What are cosmic rays?
1(1)
1.2 Objective of this book
1(2)
1.3 Types of cosmic ray experiment
3(3)
1.4 Composition of cosmic rays
6(1)
1.5 Energy spectra
7(3)
1.6 Energy density of cosmic rays
10(2)
2 Cosmic ray data 12(18)
2.1 Lessons from the heliosphere
13(4)
2.2 Measurements with spectrometers
17(3)
2.3 Measurements with calorimeters
20(2)
2.4 Spectrum of all nucleons
22(1)
2.5 Indirect measurements at high energy
23(5)
2.6 Primary composition from air shower experiments
28(2)
3 Particle physics 30(35)
3.1 Historical relation of cosmic ray and particle physics
30(2)
3.2 The Standard Model of particle physics
32(9)
3.3 Quark model of hadrons and hadron masses
41(4)
3.4 Oscillation of neutral mesons
45(2)
3.5 Electron—positron annihilation
47(2)
3.6 Weak decays
49(3)
3.7 QCD-improved parton model and high-p processes
52(8)
3.8 Concepts for describing low-p processes
60(5)
4 Hadronic interactions and accelerator data 65(42)
4.1 Basics
65(7)
4.2 Total and elastic cross sections
72(12)
4.3 Phenomenology of particle production
84(13)
4.4 Nuclear targets and projectiles
97(4)
4.5 Hadronic interaction of photons
101(4)
4.6 Extrapolation to very high energy
105(2)
5 Cascade equations 107(19)
5.1 Basic equation and boundary conditions
107(2)
5.2 Boundary conditions
109(1)
5.3 Energy loss by charged particles
110(1)
5.4 Electrons, positrons and photons
111(5)
5.5 Nucleons in the atmosphere
116(3)
5.6 Hadrons in the atmosphere
119(2)
5.7 The atmosphere
121(1)
5.8 Meson fluxes
122(4)
6 Atmospheric muons and neutrinos 126(23)
6.1 Meson decay
126(3)
6.2 Production of muons and muon neutrinos
129(4)
6.3 Muons in the atmosphere
133(2)
6.4 Relation to primary energy
135(2)
6.5 Muon charge ratio
137(3)
6.6 Neutrinos in the atmosphere
140(7)
6.7 Non-power law primary spectrum and scaling violations
147(2)
7 Neutrino masses and oscillations 149(14)
7.1 Neutrino mixing
149(4)
7.2 Oscillation in vacuum
153(4)
7.3 Oscillation in matter
157(2)
7.4 Neutrino mass hierarchy
159(1)
7.5 Oscillation over astronomical distances
160(3)
8 Muons and neutrinos underground 163(23)
8.1 Passage of muons through matter
164(2)
8.2 Atmospheric muons underground
166(4)
8.3 Neutrinos underground
170(9)
8.4 Prompt leptons
179(4)
8.5 Seasonal variation of atmospheric muons and neutrinos
183(3)
9 Cosmic rays in the Galaxy 186(18)
9.1 Cosmic ray transport in the Galaxy
187(2)
9.2 The Galaxy
189(2)
9.3 Models of propagation
191(13)
10 Extragalactic propagation of cosmic rays 204(16)
10.1 Energy loss for protons and neutrons
205(5)
10.2 Photodisintegration of nuclei
210(2)
10.3 Secondary particle production
212(5)
10.4 The role of magnetic fields
217(3)
11 Astrophysical γ-rays and neutrinos 220(16)
11.1 γ-rays from decay of π0
220(4)
11.2 Production of gamma rays by electron bremsstrahlung
224(1)
11.3 Diffuse γ-rays from the Galactic plane
225(3)
11.4 Neutrinos from the Galactic plane
228(2)
11.5 Spectrum of electrons
230(1)
11.6 Positrons
231(2)
11.7 Cosmic rays and γ-rays in external galaxies
233(3)
12 Acceleration 236(22)
12.1 Power
237(1)
12.2 Shock acceleration
237(6)
12.3 Acceleration at supernova blast waves
243(3)
12.4 Nonlinear shock acceleration
246(8)
12.5 The knee of the cosmic ray spectrum
254(1)
12.6 Acceleration to higher energy
255(3)
13 Supernovae in the Milky Way 258(24)
13.1 The Milky Way galaxy
258(5)
13.2 Supernovae
263(4)
13.3 The compact remnant: neutron stars and black holes
267(3)
13.4 High-energy binary systems
270(1)
13.5 Supernova remnants
271(7)
13.6 Pulsar wind nebulae
278(1)
13.7 Examples of supernova remnants
279(3)
14 Astrophysical accelerators and beam dumps 282(20)
14.1 Radiative processes in beam dumps
282(7)
14.2 Active galactic nuclei
289(6)
14.3 Gamma ray bursts
295(7)
15 Electromagnetic cascades 302(11)
15.1 Basic features of cascades
302(2)
15.2 Analytic solutions in cascade theory
304(5)
15.3 Approximations for total number of particles
309(1)
15.4 Fluctuations
310(1)
15.5 Lateral spread
311(2)
16 Extensive air showers 313(28)
16.1 Basic features of air showers
313(2)
16.2 The Heitler-Matthews splitting model
315(1)
16.3 Muons in air showers
316(4)
16.4 Nuclei and the superposition model
320(3)
16.5 Elongation rate theorem
323(1)
16.6 Shower universality and cross section measurement
324(2)
16.7 Particle detector arrays
326(4)
16.8 Atmospheric Cherenkov light detectors
330(4)
16.9 Fluorescence telescopes
334(3)
16.10 Radio signal detection
337(4)
17 Very high energy cosmic rays 341(15)
17.1 The knee of the spectrum
342(3)
17.2 Depth of shower maximum and composition
345(3)
17.3 Ultra-high-energy cosmic rays
348(3)
17.4 Sources of extragalactic cosmic rays
351(4)
17.5 Future experiments
355(1)
18 Neutrino astronomy 356(18)
18.1 Motivation for a kilometer-scale neutrino telescope
357(1)
18.2 From DUMAND to IceCube and beyond
358(1)
18.3 Signals and backgrounds in a neutrino detector
359(3)
18.4 Event types
362(1)
18.5 Searching for point sources of neutrinos
363(2)
18.6 Observation of astrophysical neutrinos
365(3)
18.7 Sources of astrophysical neutrinos
368(4)
18.8 Multi-messenger astronomy
372(2)
Appendix 374(28)
A.1 Units, constants and definitions
374(1)
A.2 References to flux measurements
374(1)
A.3 Particle flux, density and interaction cross section
375(3)
A.4 Fundamentals of scattering theory
378(6)
A.5 Regge amplitude
384(2)
A.6 Glauber model of nuclear cross sections
386(4)
A.7 Earth's atmosphere
390(1)
A.8 Longitudinal development of air showers
391(2)
A.9 Secondary positrons and electrons
393(2)
A.10 Liouville's theorem and cosmic ray propagation
395(2)
A.11 Cosmology and distance measures
397(2)
A.12 The Hillas splitting algorithm
399(3)
References 402(39)
Index 441
Thomas K. Gaisser is Martin A. Pomerantz Professor of Physics at the University of Delaware. He is a Fellow of the American Physical Society and recipient of the Alexander von Humboldt prize. His research at the Bartol Research Institute in the Department of Physics and Astronomy includes cosmic ray physics, atmospheric neutrinos and neutrino astronomy. Ralph Engel is a researcher at the Institute of Nuclear Physics and at the Karlsruhe Institute of Technology, Germany, where he specialises in the development of hadronic interaction models and their application to astrophysical questions. He is the author or co-author of a number of simulation codes commonly applied in cosmic ray physics, including DPMJET, CONEX, SOFIA and Sibyll. Elisa Resconi is a Professor in the Department of Physics at the Technische Universität München, where she focuses on the development of photosensors, the physics of neutrino oscillations and the search for neutrino point sources. She is a recipient of the Emmy-Noether grant and the Heisenberg professorship.