Atnaujinkite slapukų nuostatas

Course in Large Sample Theory [Minkštas viršelis]

  • Formatas: Paperback / softback, 258 pages, aukštis x plotis: 229x152 mm, weight: 480 g
  • Serija: Chapman & Hall/CRC Texts in Statistical Science
  • Išleidimo metai: 01-Jul-1996
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-10: 0412043718
  • ISBN-13: 9780412043710
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 258 pages, aukštis x plotis: 229x152 mm, weight: 480 g
  • Serija: Chapman & Hall/CRC Texts in Statistical Science
  • Išleidimo metai: 01-Jul-1996
  • Leidėjas: Chapman & Hall/CRC
  • ISBN-10: 0412043718
  • ISBN-13: 9780412043710
Kitos knygos pagal šią temą:
A Course in Large Sample Theory is presented in four parts. The first treats basic probabilistic notions, the second features the basic statistical tools for expanding the theory, the third contains special topics as applications of the general theory, and the fourth covers more standard statistical topics. Nearly all topics are covered in their multivariate setting.

The book is intended as a first year graduate course in large sample theory for statisticians. It has been used by graduate students in statistics, biostatistics, mathematics, and related fields. Throughout the book there are many examples and exercises with solutions. It is an ideal text for self study.

Daugiau informacijos

Springer Book Archives
Preface viiPart 1 Basic Probability 11 Modes of Convergence 32 Partial
Converses to Theorem 1 83 Convergence in Law 134 Laws of Large Numbers 195
Central Limit Theorems 26Part 2 Basic Statistical Large Sample Theory 376
Slutsky Theorems 397 Functions of the Sample Moments 448 The Sample
Correlation Coefficient 519 Pearsons Chi-Square 5610 Asymptotic Power of the
Pearson Chi-Square Test 61Part 3 Special Topics 6711 Stationary m-Dependent
Sequences 6912 Some Rank Statistics 7513 Asymptotic Distribution of Sample
Quantiles 8714 Asymptotic Theory of Extreme Order Statistics 9415 Asymptotic
Joint Distributions of Extrema 101Part 4 Efficient Estimation and Testing
10516 A Uniform Strong Law of Large Numbers 10717 Strong Consistency of
Maximum-Likelihood Estimates 11218 Asymptotic Normality of the
Maximum-LikelihoodEstimate 11919 The Cram6r-Rao Lower Bound 12620 Asymptotic
Efficiency 13321 Asymptotic Normality of Posterior Distributions 14022
Asymptotic Distribution of the Likelihood RatioTest Statistic 14423 Minimum
Chi-Square Estimates 15124 General Chi-Square Tests 163Appendix: Solutions to
the exercises 172References 236Index
Thomas S. Ferguson