Atnaujinkite slapukų nuostatas

El. knyga: Course in Number Theory and Cryptography

4.21/5 (57 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 114
  • Išleidimo metai: 05-Sep-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781441985927
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 114
  • Išleidimo metai: 05-Sep-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781441985927
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

. . . both Gauss and lesser mathematicians may be justified in rejoic­ ing that there is one science [ number theory] at any rate, and that their own, whose very remoteness from ordinary human activities should keep it gentle and clean. - G. H. Hardy, A Mathematician's Apology, 1940 G. H. Hardy would have been surprised and probably displeased with the increasing interest in number theory for application to "ordinary human activities" such as information transmission (error-correcting codes) and cryptography (secret codes). Less than a half-century after Hardy wrote the words quoted above, it is no longer inconceivable (though it hasn't happened yet) that the N. S. A. (the agency for U. S. government work on cryptography) will demand prior review and clearance before publication of theoretical research papers on certain types of number theory. In part it is the dramatic increase in computer power and sophistica­ tion that has influenced some of the questions being studied by number theorists, giving rise to a new branch of the subject, called "computational number theory. " This book presumes almost no background in algebra or number the­ ory. Its purpose is to introduce the reader to arithmetic topics, both ancient and very modern, which have been at the center of interest in applications, especially in cryptography. For this reason we take an algorithmic approach, emphasizing estimates of the efficiency of the techniques that arise from the theory.

Daugiau informacijos

Springer Book Archives
Foreword v
Preface to the Second Edition vii
Chapter I Some Topics in Elementary Number Theory
1(30)
1 Time estimates for doing arithmetic
1(11)
2 Divisibility and the Euclidean algorithm
12(7)
3 Congruences
19(8)
4 Some applications to factoring
27(4)
Chapter II Finite Fields and Quadratic Residues
31(23)
1 Finite fields
33(9)
2 Quadratic residues and reciprocity
42(12)
Chapter III Cryptography
54(29)
1 Some simple cryptosystems
54(11)
2 Enciphering matrices
65(18)
Chapter IV Public Key
83(42)
1 The idea of public key cryptography
83(9)
2 RSA
92(5)
3 Discrete log
97(14)
4 Knapsack
111(6)
5 Zero-knowledge protocols and oblivious transfer
117(8)
Chapter V Primality and Factoring
125(42)
1 Pseudoprimes
126(12)
2 The rho method
138(5)
3 Fermat factorization and factor bases
143(11)
4 The continued fraction method
154(6)
5 The quadratic sieve method
160(7)
Chapter VI Elliptic Curves
167(33)
1 Basic facts
167(10)
2 Elliptic curve cryptosystems
177(10)
3 Elliptic curve primality test
187(4)
4 Elliptic curve factorization
191(9)
Answers to Exercises 200(31)
Index 231