Atnaujinkite slapukų nuostatas

El. knyga: Covers and Envelopes in the Category of Complexes of Modules

(University of Almeria, Spain)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Collects scattered lecture notes into a single volume that provides an account of recent developments in the theory of complexes and presents new ideas in homological methods. Rozas (algebra, University of Almerfa, Spain) introduces the theory of complexes of modules using only elementary tools, making the field more accessible to non- specialists. He focuses on envelopes and covers in this category with respect to some well-established and important classes of complexes, and places emphasis on DG-injective and DG-projective complexes and flat and DG-flat covers. Annotation c. Book News, Inc., Portland, OR (booknews.com)

Over the last few years, the study of complexes has become increasingly important. To date, however, most of the research is scattered throughout the literature or available only as lecture notes. Covers and Envelopes in the Category of Complexes of Modules collects these scattered notes and results into a single, concise volume that provides an account of recent developments in the theory and presents several new and important ideas.
The author introduces the theory of complexes of modules using only elementary tools-making the field more accessible to non-specialists. He focuses the study on envelopes and covers in this category with respect to some well established and important classes of complexes. He places particular emphasis on DG-injective and DG-projective complexes and flat and DG-flat covers.
Other topics covered include Zorn's Lemma for categories, preserving and reflecting covers by functors, orthogonality in the category of complexes, Gorenstein injective and projective complexes, and pure sequences of complexes.
Along with its value as a collection of recent work in the field, Covers and Envelopes in the Category of Complexes of Modules presents powerful new ideas that will undoubtedly advance homological methods. Mathematicians-especially researchers in module theory and homological algebra-will welcome this volume as a reference guide and for its new and important results.
Covers and Envelopes in Categories
1(31)
Zorn's Lemma for Categories
1(5)
Torsion Theory Relative to Ext
6(15)
The Definition of Torsion Theory Relative to Ext
6(5)
Examples
11(1)
Hereditary and Perfect Torsion Theories
12(7)
Torsion Theories and Balance
19(2)
Preserving and Reflecting Covers by Functors
21(11)
Orthogonality in the Category of Complexes
32(20)
Introduction
32(2)
Spaltenstein's Quasi-Isomorphisms
34(4)
Exact, DG-Injective and DG-Projective Covers and Envelopes
38(9)
Minimal Injective Resolutions
47(5)
Gorenstein Injective and Projective Complexes
52(29)
Preliminaries
52(3)
Gorenstein Injective Complexes
55(14)
Existence of Envelopes
60(4)
Existence of DG-Injective and Gorenstein Injective Covers
64(5)
Gorenstein Projective Complexes
69(12)
Auslander's Last Theorem
74(7)
Flat and DG-Flat Complexes
81(27)
First Definitions and Results
81(6)
Some Canonical Isomorphisms
87(9)
Flat Covers of Complexes
96(4)
Existence of Flat Covers of Complexes Over ZZ
97(1)
Cotorsion Complexes
98(2)
Existence of Flat Covers of Complexes Over a Commutative Noetherian Ring with Finite Krull Dimension
100(8)
DG-Flat Covers
104(4)
Pure Sequences of Complexes
108(25)
Preliminaries
108(2)
Flat Preenvelope of Complexes
110(3)
Pure Injective and Cotorsion Envelopes
113(4)
Gorenstein Flat Complexes
117(7)
Existence of Gorenstein Flat Covers
122(2)
A Theorem on Perfect Rings
124(3)
DG-Pure Sequences
127(6)
Bibliography 133(2)
Index 135
J.R. Garcia Rozas (University of Almeria, Spain)