|
|
xiv | |
|
|
xx | |
Preface |
|
xxi | |
|
1 Data science and big data |
|
|
1 | (5) |
|
|
1 | (1) |
|
|
1 | (2) |
|
1.3 Data science becomes the norm |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (2) |
|
2 Creating value with data science |
|
|
6 | (14) |
|
|
6 | (1) |
|
2.2 Data science value creation model |
|
|
6 | (1) |
|
2.3 Value creation objectives |
|
|
7 | (3) |
|
2.3.1 Balance between V2F and V2C |
|
|
7 | (1) |
|
2.3.2 V2S: Extending value creation |
|
|
8 | (1) |
|
2.3.3 Metrics for V2F and V2C |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (2) |
|
2.5.1 The power of visualization and storytelling |
|
|
12 | (1) |
|
|
13 | (1) |
|
2.7 Data analytics capabilities |
|
|
13 | (2) |
|
2.7.1 The role of culture |
|
|
15 | (1) |
|
2.8 Data science value creation model as guidance for this book |
|
|
15 | (2) |
|
|
17 | (3) |
|
Assignment 2.1 V2C and V2F company classification |
|
|
17 | (3) |
|
3 Value objectives and metrics |
|
|
20 | (40) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
21 | (1) |
|
3.2.2 New big data market metrics |
|
|
21 | (2) |
|
|
23 | (6) |
|
3.3.1 Brand-Asset Valuator® |
|
|
25 | (1) |
|
3.3.2 Do brand metrics matter? |
|
|
25 | (2) |
|
3.3.3 New big data brand metrics |
|
|
27 | (1) |
|
3.3.4 Digital brand association networks |
|
|
27 | (1) |
|
3.3.5 Digital brand metrics |
|
|
27 | (1) |
|
3.3.6 Social media brand metrics |
|
|
28 | (1) |
|
|
29 | (5) |
|
3.4.1 Is there a silver metric? |
|
|
31 | (1) |
|
3.4.2 Other theoretical relationship metrics |
|
|
32 | (1) |
|
3.4.3 Customer equity drivers |
|
|
32 | (1) |
|
3.4.4 New big data customer metrics |
|
|
33 | (1) |
|
|
34 | (1) |
|
3.6 Should firms collect all V2C metrics? |
|
|
34 | (1) |
|
3.7 Value to firm metrics |
|
|
35 | (1) |
|
|
36 | (4) |
|
3.8.1 Market attractiveness metrics |
|
|
36 | (1) |
|
3.8.2 New product sales metrics |
|
|
37 | (1) |
|
3.8.3 Brand market performance metrics |
|
|
37 | (2) |
|
3.8.4 Brand evaluation metrics |
|
|
39 | (1) |
|
|
40 | (11) |
|
3.9.1 Customer acquisition metrics |
|
|
41 | (1) |
|
3.9.2 Customer development metrics |
|
|
41 | (2) |
|
3.9.3 Customer value metrics |
|
|
43 | (3) |
|
Case 3.1 Case CLV at energy company |
|
|
46 | (3) |
|
|
49 | (1) |
|
3.9.5 New big data metrics |
|
|
49 | (2) |
|
|
51 | (1) |
|
|
52 | (8) |
|
Assignment 3.1 CLV Health insurance company |
|
|
53 | (1) |
|
Assignment 3.2 Metrics Dutch supermarkets |
|
|
53 | (7) |
|
|
60 | (17) |
|
|
60 | (1) |
|
4.2 Data sources and the different types of data |
|
|
61 | (9) |
|
4.2.1 External data sources versus internal data sources |
|
|
62 | (1) |
|
4.2.2 Structured versus unstructured data |
|
|
63 | (1) |
|
|
64 | (2) |
|
4.2.4 Big data influence on market data |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.2.6 Big data influence on brand data |
|
|
68 | (1) |
|
|
68 | (2) |
|
4.2.8 Big data influence on customer data |
|
|
70 | (1) |
|
4.3 Using the different data sources in the era of big data |
|
|
70 | (2) |
|
4.4 Data quality and data cleansing |
|
|
72 | (2) |
|
|
72 | (1) |
|
|
73 | (1) |
|
4.4.3 Missing values and data fusion |
|
|
74 | (1) |
|
|
74 | (3) |
|
5 Data storing and integration |
|
|
77 | (22) |
|
|
77 | (1) |
|
5.2 Storing and integrating data sources in data warehouses |
|
|
78 | (4) |
|
5.2.1 Storing data in the data warehouse |
|
|
78 | (1) |
|
5.2.2 The data model in a data warehouse |
|
|
79 | (2) |
|
5.2.3 Data integration into the data warehouse |
|
|
81 | (1) |
|
5.3 Storing and integrating data sources in data lakes |
|
|
82 | (3) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
5.4 Challenges of data integration in the era of big data |
|
|
85 | (11) |
|
5.4.1 The technical challenges of integrated data |
|
|
86 | (2) |
|
5.4.2 The analytical challenges of integrated data |
|
|
88 | (1) |
|
5.4.3 The business challenges of integrated data |
|
|
88 | (5) |
|
Case 5.1 Data integration for an insurance company |
|
|
93 | (3) |
|
|
96 | (3) |
|
Assignment (Chapters 4 and 5): Superstore |
|
|
97 | (2) |
|
6 Customer privacy and data security |
|
|
99 | (20) |
|
|
99 | (1) |
|
6.2 Why is privacy a big issue? |
|
|
100 | (1) |
|
|
101 | (1) |
|
6.4 Customers' privacy concern |
|
|
101 | (2) |
|
6.5 Privacy paradox and privacy calculus |
|
|
103 | (1) |
|
6.6 Governments and privacy legislation |
|
|
103 | (6) |
|
6.6.1 Steps to comply with GDPR |
|
|
107 | (2) |
|
6.6.2 Going beyond legislation |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (2) |
|
6.9 Privacy and internal data analytics |
|
|
112 | (2) |
|
6.9.1 Model based solutions for privacy |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
115 | (4) |
|
Assignment 6.1 Curani pet care |
|
|
115 | (4) |
|
|
119 | (19) |
|
|
119 | (1) |
|
7.2 The power of analytics |
|
|
120 | (1) |
|
7.3 Strategies for analyzing data |
|
|
121 | (4) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
7.4 Types of data analytics |
|
|
125 | (4) |
|
7.4.1 Descriptive analytics |
|
|
126 | (1) |
|
7.4.2 Diagnostic analytics |
|
|
126 | (2) |
|
7.4.3 Predictive analytics |
|
|
128 | (1) |
|
7.4.4 Prescriptive analytics |
|
|
128 | (1) |
|
7.5 How big data and AI change analytics |
|
|
129 | (6) |
|
|
129 | (2) |
|
7.5.2 Important changes in the analytical working field |
|
|
131 | (4) |
|
7.6 Analytical methods and techniques |
|
|
135 | (1) |
|
|
136 | (2) |
|
|
138 | (36) |
|
|
138 | (1) |
|
8.2 Descriptive analyses---reporting |
|
|
139 | (3) |
|
8.3 Descriptive analyses---investigating one-to-one relationships |
|
|
142 | (8) |
|
8.3.1 KPI categorical, driver categorical |
|
|
143 | (1) |
|
8.3.2 KPI numerical, driver categorical |
|
|
144 | (2) |
|
8.3.3 KPI categorical, driver numerical |
|
|
146 | (2) |
|
8.3.4 KPI numerical, driver numerical |
|
|
148 | (2) |
|
8.4 Special cases of one-to-one exploratory analyses |
|
|
150 | (4) |
|
8.4.1 Profiling and customer crossings |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (5) |
|
|
154 | (2) |
|
|
156 | (1) |
|
8.5.3 Like-4-like analysis |
|
|
157 | (2) |
|
8.6 Identifying structure in the data---unsupervised learning |
|
|
159 | (9) |
|
|
161 | (3) |
|
8.6.2 Principal components analysis |
|
|
164 | (4) |
|
|
168 | (6) |
|
|
168 | (6) |
|
|
174 | (47) |
|
9.1 Introduction to data modeling |
|
|
174 | (3) |
|
|
177 | (6) |
|
9.2.1 Model specification |
|
|
178 | (3) |
|
|
181 | (1) |
|
|
181 | (2) |
|
|
183 | (9) |
|
|
192 | (7) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
9.5 Data-driven modeling and machine learning |
|
|
199 | (1) |
|
|
200 | (6) |
|
9.7 Ensemble learning models: bagging, random forests, boosting |
|
|
206 | (4) |
|
9.7.1 Bagging decision trees |
|
|
206 | (1) |
|
|
207 | (1) |
|
9.7.3 Boosting decision trees |
|
|
208 | (2) |
|
|
210 | (1) |
|
9.9 Support vector machines (SVM) |
|
|
210 | (2) |
|
|
212 | (2) |
|
9.11 Reinforcement learning |
|
|
214 | (1) |
|
|
215 | (6) |
|
|
216 | (5) |
|
10 Creating impact with storytelling and visualization |
|
|
221 | (25) |
|
|
221 | (2) |
|
10.2 Failure factors for creating impact |
|
|
223 | (1) |
|
|
224 | (4) |
|
10.3.1 Checklist for a clear storyline |
|
|
226 | (2) |
|
|
228 | (13) |
|
10.4.1 Choosing the chart type |
|
|
230 | (4) |
|
|
234 | (2) |
|
10.4.3 Misleading graphs and other problems |
|
|
236 | (5) |
|
10.5 Trends in visualization |
|
|
241 | (1) |
|
|
242 | (4) |
|
|
242 | (1) |
|
Assignment 10.1 Vodafone press release |
|
|
242 | (2) |
|
Assignment 10.2 Remove the errors from the graph |
|
|
244 | (2) |
|
11 Creating value with data science |
|
|
246 | (29) |
|
|
246 | (1) |
|
11.2 Data science value creation |
|
|
247 | (1) |
|
11.3 Value creation at marketing level |
|
|
247 | (10) |
|
|
247 | (1) |
|
11.3.2 Marketing performance measurement |
|
|
248 | (1) |
|
Case 11.1 Marketing performance measurement at an insurance company |
|
|
249 | (5) |
|
Case 11.2 Attribution modeling at an online retailer |
|
|
254 | (2) |
|
|
256 | (1) |
|
11.4 Value creation at customer-firm interface level |
|
|
257 | (9) |
|
11.4.1 Recommendation systems |
|
|
258 | (1) |
|
Case 11.3 Implementation of big data analytics for relevant personalization at an online retailer |
|
|
259 | (5) |
|
|
264 | (2) |
|
11.4.3 Dark sides of personalization |
|
|
266 | (1) |
|
11.5 Data science as business model |
|
|
266 | (1) |
|
11.6 Opportunity finding as a methodology to create more value |
|
|
267 | (3) |
|
11.6.1 Step 1: The business challenge |
|
|
268 | (1) |
|
11.6.2 Step 2: The sub questions |
|
|
268 | (1) |
|
11.6.3 Step 3: The factors |
|
|
268 | (1) |
|
11.6.4 Step 4: Hypotheses |
|
|
269 | (1) |
|
|
269 | (1) |
|
11.6.6 Step 6: Initiatives |
|
|
269 | (1) |
|
|
269 | (1) |
|
|
270 | (5) |
|
Assignment 11.1 OpportunityfindingforSure.com |
|
|
270 | (5) |
|
12 Building successful data analytics capabilities |
|
|
275 | (30) |
|
|
275 | (2) |
|
12.2 Transformation to create successful analytical competence |
|
|
277 | (2) |
|
|
277 | (1) |
|
|
277 | (2) |
|
12.3 Building block 1: process |
|
|
279 | (4) |
|
12.3.1 Define and structure the business challenge |
|
|
280 | (1) |
|
12.3.2 Collect and manipulate data |
|
|
280 | (1) |
|
12.3.3 Perform data analysis |
|
|
281 | (1) |
|
12.3.4 Presenting opportunities and solutions |
|
|
281 | (1) |
|
12.3.5 Implementation of results |
|
|
282 | (1) |
|
12.4 Building block 2: people |
|
|
283 | (5) |
|
|
283 | (2) |
|
|
285 | (1) |
|
12.4.3 Acquiring new talent |
|
|
286 | (1) |
|
|
287 | (1) |
|
12.4.5 Scalable analytics |
|
|
288 | (1) |
|
12.5 Building block 3: systems |
|
|
288 | (6) |
|
|
289 | (2) |
|
|
291 | (1) |
|
12.5.3 Analytical data platform |
|
|
291 | (1) |
|
12.5.4 Analytical applications |
|
|
292 | (2) |
|
12.6 Building block 4: organization |
|
|
294 | (4) |
|
12.6.1 Centralization or decentralization |
|
|
294 | (1) |
|
12.6.2 Cooperation with other functions |
|
|
295 | (1) |
|
12.6.3 Establishing a data-driven culture |
|
|
296 | (2) |
|
|
298 | (7) |
|
|
299 | (1) |
|
Assignment 12.1 The multidisciplinary skills of the modern data analyst |
|
|
299 | (1) |
|
Assignment 12.2 Data analytics function NL Insurance |
|
|
300 | (5) |
Index |
|
305 | |