Atnaujinkite slapukų nuostatas

El. knyga: Crowds In Equations: An Introduction To The Microscopic Modeling Of Crowds

(Univ Paris Sud, France), (Univ Paris Sud, France & Cnrs, France)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The book contains self-contained descriptions of existing models, accompanied by critical analyses of their properties both from a theoretical and practical standpoint. It aims to develop 'modeling skills' within the readers, giving them the ability to develop their own models and improve existing ones. Written in connection with a full, open source Python Library, this project also enables readers to run the simulations discussed within the text.

Foreword v
1 Introduction
1(12)
1.1 From Passive to Active Entities
1(2)
1.2 Basics on Crowd Motion Modeling
3(2)
1.3 The Mathematical Standpoint
5(7)
1.4 How to Use this Book?
12(1)
2 One-Dimensional Microscopic Models
13(24)
2.1 Follow-the-Leader Model
14(16)
2.2 Accounting for Inertia/Delays
30(7)
3 Social Force Model, Native and Overdamped Forms
37(22)
3.1 Inertial Social Force Model
37(12)
3.2 Overdamped Social Force Model
49(7)
3.3 Alternative Approaches
56(3)
4 Granular Models
59(24)
4.1 One-Dimensional Model
59(2)
4.2 Two-Dimensional Model
61(3)
4.3 Numerical Scheme
64(2)
4.4 Numerical Experiments
66(2)
4.5 Mathematical Issues
68(8)
4.6 Critical Discussion
76(7)
5 Cellular Automata
83(14)
5.1 Cellular Automata: General Principles
84(1)
5.2 Algorithms
85(7)
5.3 Variations, Extensions
92(1)
5.4 Cellular Automata, Mathematical Issues
93(4)
6 Compartment Models
97(14)
6.1 Compartment Models: Toy Versions and General Setting
97(4)
6.2 Numerical Solution
101(1)
6.3 Extensions
102(2)
6.4 Numerical Illustration
104(1)
6.5 Mathematical Framework: A Cascade of Gradient Flows
104(7)
7 Toward Macroscopic Models
111(16)
7.1 One-Dimensional Macroscopic Traffic Model
112(3)
7.2 Two-Dimensional Models
115(2)
7.3 Granular Models: Hard Congestion
117(6)
7.4 Micro-Macro Issues
123(2)
7.5 Alternative Macroscopic Models
125(2)
8 Computing Distances and Desired Velocities
127(18)
8.1 Shortest Path Problem on a Graph
130(2)
8.2 Shortest Path on a Domain: The Eikonal Equation
132(3)
8.3 Non-homogenous Domains, Various Extensions
135(4)
8.4 Shortest Paths in a Dynamic Environment
139(3)
8.5 Alternative Way to Compute Desired Velocities
142(1)
8.6 Illustrations
143(2)
9 Data, Observable Phenomena
145(16)
9.1 Diameters
145(1)
9.2 Proxernics, Interpersonal Distances, Density
146(2)
9.3 Cone of Vision
148(1)
9.4 Pedestrian Speed, Fundamental Diagram
148(3)
9.5 Door Capacity
151(1)
9.6 Capacity Drop Phenomenon
151(1)
9.7 Faster-is-Slower Effect
152(2)
9.8 Influence of an Obstacle
154(3)
9.9 Stop-and-Go Waves
157(1)
9.10 Further Considerations on Human Behavior
158(3)
10 A Wider Look on Characteristic Phenomena in Crowds
161(16)
10.1 Faster-is-Slower Effect
161(7)
10.2 Fluidizing Effect of an Obstacle
168(2)
10.3 Damping, Propagation, and Stop-and-Go Waves
170(7)
Appendix
177(6)
A.1 Ordinary Differential Equations
177(3)
A.2 Constrained Optimization
180(3)
Bibliography 183(6)
Index 189