Preface |
|
xi | |
Nomenclature |
|
xiii | |
Authors |
|
xxi | |
|
|
1 | (54) |
|
|
1 | (2) |
|
1.2 Cryogenic Heat Transfer Applications |
|
|
3 | (2) |
|
1.3 Material Properties at Cryogenic Temperatures |
|
|
5 | (32) |
|
1.3.1 Computer-Generated Material Property Data |
|
|
5 | (2) |
|
|
7 | (1) |
|
1.3.2.1 Specific Heats of Gases |
|
|
8 | (4) |
|
1.3.2.2 Specific Heats of Liquids |
|
|
12 | (2) |
|
1.3.2.3 Specific Heats of Solids |
|
|
14 | (9) |
|
1.3.3 Thermal Conductivity |
|
|
23 | (1) |
|
1.3.3.1 Thermal Conductivity of Gases |
|
|
24 | (4) |
|
1.3.3.2 Thermal Conductivity of Liquids |
|
|
28 | (1) |
|
1.3.3.3 Thermal Conductivity of Solids |
|
|
29 | (3) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (3) |
|
1.4 Cryogenic Insulations |
|
|
37 | (18) |
|
1.4.1 Expanded Closed-Cell Foams |
|
|
37 | (3) |
|
1.4.2 Gas-Filled Powders and Fibrous Materials |
|
|
40 | (1) |
|
|
41 | (1) |
|
1.4.4 Evacuated Powders and Fibrous Materials |
|
|
42 | (2) |
|
1.4.5 Opacified Powder Insulations |
|
|
44 | (1) |
|
1.4.6 Microsphere Insulation |
|
|
44 | (2) |
|
1.4.7 Multilayer Insulations |
|
|
46 | (5) |
|
|
51 | (1) |
|
|
52 | (3) |
|
2 One-Dimensional, Steady-State Conduction Heat Transfer |
|
|
55 | (66) |
|
|
55 | (2) |
|
2.2 One-Dimensional Steady-State Conduction |
|
|
57 | (16) |
|
2.3 Conduction in Composite Materials |
|
|
73 | (7) |
|
2.4 Thermal Contact Resistance |
|
|
80 | (5) |
|
2.5 Conduction in Extended Surfaces |
|
|
85 | (11) |
|
2.5.1 Fins with Constant Cross Section |
|
|
85 | (5) |
|
2.5.2 Other Fin Geometries |
|
|
90 | (6) |
|
2.6 Properties of Frost at Cryogenic Temperatures |
|
|
96 | (3) |
|
2.7 Numerical Analysis of One-Dimensional Conduction |
|
|
99 | (6) |
|
|
105 | (16) |
|
|
114 | (4) |
|
|
118 | (3) |
|
3 Lumped Capacity Transient Heat Transfer |
|
|
121 | (28) |
|
3.1 Lumped Thermal Capacity Model and the Biot Number |
|
|
121 | (2) |
|
3.2 Governing Equation for Lumped Thermal Capacity Model |
|
|
123 | (4) |
|
3.3 Lumped Thermal Capacity Model and the Thermal Lag |
|
|
127 | (4) |
|
|
131 | (10) |
|
|
134 | (1) |
|
3.4.2 Runge-Kutta Fourth-Order Method |
|
|
135 | (3) |
|
3.4.3 EES' Integral Command |
|
|
138 | (3) |
|
3.5 Cooldown of Objects with Coated Surfaces |
|
|
141 | (8) |
|
|
143 | (4) |
|
|
147 | (2) |
|
4 Two-Dimensional Steady-State Conduction |
|
|
149 | (40) |
|
4.1 Separation of Variables Solution |
|
|
149 | (17) |
|
4.1.1 Conditions for the Separation of Variables Method |
|
|
149 | (1) |
|
4.1.2 Two-Dimensional Steady-State Conduction Example |
|
|
150 | (16) |
|
|
166 | (7) |
|
|
173 | (16) |
|
|
184 | (4) |
|
|
188 | (1) |
|
5 Transient Conduction with Spatial Gradients |
|
|
189 | (70) |
|
5.1 Conduction Time Constant |
|
|
189 | (3) |
|
5.2 Separation of Variables Solution |
|
|
192 | (24) |
|
5.2.1 Cooldown of a Large Plate |
|
|
192 | (6) |
|
5.2.2 Solution at Large Fourier Number |
|
|
198 | (1) |
|
5.2.3 Heat Flux at the Plate Surface |
|
|
199 | (1) |
|
5.2.4 Total Energy Transferred |
|
|
200 | (2) |
|
5.2.5 Plate with Convection at the Surface |
|
|
202 | (6) |
|
5.2.6 Long Circular Cylinder |
|
|
208 | (3) |
|
|
211 | (5) |
|
|
216 | (13) |
|
5.3.1 Laplace Transform Example |
|
|
217 | (1) |
|
5.3.2 Semi-Infinite Solid |
|
|
218 | (6) |
|
5.3.3 Semi-Infinite Solid with Convection at the Surface |
|
|
224 | (5) |
|
|
229 | (12) |
|
5.4.1 Explicit Formulation |
|
|
229 | (4) |
|
5.4.2 Implicit Formulation |
|
|
233 | (8) |
|
5.5 Cooldown of Cryogenic Fluid Storage Vessels |
|
|
241 | (18) |
|
|
248 | (8) |
|
|
256 | (3) |
|
6 Single-Phase Convection Heat Transfer |
|
|
259 | (70) |
|
|
259 | (2) |
|
6.2 Dimensionless Numbers |
|
|
261 | (3) |
|
6.3 Internal Forced Convection Flow |
|
|
264 | (13) |
|
|
264 | (5) |
|
6.3.2 EES' Internal Flow Library |
|
|
269 | (4) |
|
6.3.3 Noncircular Channels |
|
|
273 | (4) |
|
6.4 External Forced Convection Flow |
|
|
277 | (14) |
|
|
277 | (2) |
|
|
279 | (4) |
|
|
283 | (1) |
|
|
283 | (8) |
|
|
291 | (8) |
|
6.5.1 Natural Convection over Plates |
|
|
291 | (3) |
|
6.5.2 Natural Convection over Spheres |
|
|
294 | (2) |
|
6.5.3 Natural Convection over Horizontal Cylinders |
|
|
296 | (1) |
|
6.5.4 Natural Convection in Enclosures |
|
|
296 | (3) |
|
6.6 Heat Transfer in the Near-Critical Region |
|
|
299 | (8) |
|
6.6.1 Properties in the Near-Critical Region |
|
|
300 | (4) |
|
6.6.2 Heat Transfer Correlations in the Near-Critical Region |
|
|
304 | (3) |
|
|
307 | (6) |
|
6.8 Oscillating Flow Heat Transfer |
|
|
313 | (16) |
|
|
314 | (4) |
|
6.8.2 Oscillating Plate with Natural Convection |
|
|
318 | (2) |
|
6.8.3 Oscillating Flow in Tubes |
|
|
320 | (2) |
|
|
322 | (3) |
|
|
325 | (4) |
|
7 Two-Phase Heat Transfer and Pressure Drop |
|
|
329 | (88) |
|
7.1 Flow Regimes in Two-Phase Flow |
|
|
329 | (6) |
|
7.2 Pressure Drop in Two-Phase Flow |
|
|
335 | (11) |
|
7.2.1 Lockhart-Martinelli Correlation |
|
|
335 | (8) |
|
7.2.2 Homogeneous Flow Model |
|
|
343 | (3) |
|
7.3 Boiling Heat Transfer |
|
|
346 | (19) |
|
|
346 | (4) |
|
7.3.2 Nucleate Pool Boiling |
|
|
350 | (2) |
|
7.3.3 Peak Nucleate Pool Boiling |
|
|
352 | (2) |
|
|
354 | (4) |
|
7.3.5 Forced-Convection Boiling |
|
|
358 | (7) |
|
|
365 | (23) |
|
7.4.1 Condensation on a Vertical Surface |
|
|
366 | (8) |
|
7.4.2 Condensation on a Horizontal Surface |
|
|
374 | (2) |
|
7.4.3 Condensation outside Tubes |
|
|
376 | (5) |
|
7.4.4 Condensation inside Horizontal Tubes |
|
|
381 | (7) |
|
7.5 Freezing at Cryogenic Temperatures |
|
|
388 | (13) |
|
7.6 Solid-Liquid (Slush) Flow and Heat Transfer |
|
|
401 | (16) |
|
|
407 | (5) |
|
|
412 | (5) |
|
8 Radiation Heat Transfer |
|
|
417 | (52) |
|
|
417 | (1) |
|
|
418 | (4) |
|
8.3 Thermal Radiation Properties |
|
|
422 | (5) |
|
8.4 Radiation Configuration Factor |
|
|
427 | (15) |
|
8.4.1 Differential Configuration Factors |
|
|
427 | (4) |
|
8.4.2 Configuration Factor Relationships |
|
|
431 | (2) |
|
8.4.3 Radiation Configuration Factors |
|
|
433 | (4) |
|
8.4.4 The Monte Carlo Technique |
|
|
437 | (5) |
|
8.5 Radiant Exchange between Two Gray Surfaces |
|
|
442 | (3) |
|
8.6 The Network Method for Enclosures |
|
|
445 | (8) |
|
8.6.1 Blackbody Enclosures |
|
|
446 | (1) |
|
8.6.2 Gray Body Enclosures |
|
|
447 | (6) |
|
8.7 Semi-Gray Surface Model |
|
|
453 | (4) |
|
8.8 Radiation from LNG Fires |
|
|
457 | (12) |
|
|
461 | (7) |
|
|
468 | (1) |
|
|
469 | (28) |
|
9.1 Flow Regimes and the Knudsen Number |
|
|
469 | (3) |
|
9.2 Flow and Conductance in Vacuum Systems |
|
|
472 | (7) |
|
9.2.1 Conductance for a Circular Tube |
|
|
472 | (2) |
|
9.2.2 Combination of Conductances |
|
|
474 | (2) |
|
9.2.3 Conductance for a Rectangular Tube |
|
|
476 | (1) |
|
9.2.4 Conductance for an Annular Flow Passage |
|
|
477 | (1) |
|
9.2.5 Conductance for a 90° Elbow Fitting |
|
|
477 | (2) |
|
9.3 Free Molecular Heat Transfer |
|
|
479 | (9) |
|
9.3.1 Free Molecular Conduction Heat Transfer |
|
|
479 | (4) |
|
9.3.2 Free Molecular Convection Heat Transfer |
|
|
483 | (5) |
|
9.4 Free Molecular Heat Transfer in Enclosures |
|
|
488 | (9) |
|
|
493 | (2) |
|
|
495 | (2) |
|
10 Cryogenic Heat Exchangers |
|
|
497 | (110) |
|
10.1 Cryogenic Heat Exchanger Types |
|
|
497 | (6) |
|
10.1.1 Tubular Exchangers |
|
|
497 | (2) |
|
10.1.2 Giauque--Hampson Exchanger |
|
|
499 | (1) |
|
10.1.3 Plate-Fin Exchangers |
|
|
500 | (2) |
|
10.1.4 Perforated-Plate Exchangers |
|
|
502 | (1) |
|
10.1.5 Sintered Metal Powder Exchangers |
|
|
502 | (1) |
|
10.2 NTU-Effectiveness Design Method |
|
|
503 | (9) |
|
10.3 Heat Exchanger Factor of Safety |
|
|
512 | (4) |
|
10.4 Giauque--Hampson Heat Exchanger Design |
|
|
516 | (14) |
|
|
516 | (2) |
|
|
518 | (3) |
|
|
521 | (1) |
|
10.4.3.1 Calculation of the Effectiveness |
|
|
521 | (1) |
|
10.4.3.2 Calculation of the Number of Transfer Units |
|
|
522 | (1) |
|
10.4.3.3 Outside (Cold) Heat Transfer Coefficient |
|
|
523 | (2) |
|
10.4.3.4 Inside (Hot) Heat Transfer Coefficient |
|
|
525 | (2) |
|
10.4.3.5 Overall Heat Transfer Coefficient |
|
|
527 | (1) |
|
|
528 | (2) |
|
10.5 Plate-Fin Heat Exchanger Design |
|
|
530 | (12) |
|
|
533 | (1) |
|
10.5.2 Heat Exchanger Effectiveness |
|
|
533 | (2) |
|
10.5.3 Number of Transfer Units |
|
|
535 | (1) |
|
10.5.4 Free-Flow Area Estimation |
|
|
535 | (2) |
|
10.5.5 Convective Heat Transfer Coefficients |
|
|
537 | (1) |
|
10.5.6 Overall Heat Transfer Coefficient |
|
|
538 | (1) |
|
10.5.7 Heat Transfer Surface Area |
|
|
539 | (1) |
|
|
539 | (2) |
|
10.5.9 Design Dimensions of the Heat Exchanger |
|
|
541 | (1) |
|
10.6 Perforated-Plate Exchanger Design |
|
|
542 | (11) |
|
|
545 | (1) |
|
10.6.2 Convection Heat Transfer Coefficients |
|
|
546 | (2) |
|
10.6.3 Overall Heat Transfer Coefficient |
|
|
548 | (1) |
|
10.6.4 Number of Transfer Units |
|
|
549 | (1) |
|
10.6.5 Heat Exchanger Effectiveness and Heat Transfer Rate |
|
|
550 | (1) |
|
|
551 | (2) |
|
10.7 Effect of Variable Specific Heat |
|
|
553 | (6) |
|
10.8 Effect of Longitudinal Heat Conduction |
|
|
559 | (8) |
|
10.9 Effect of Heat Transfer from Ambient |
|
|
567 | (6) |
|
|
573 | (9) |
|
10.10.1 Types of Regenerators |
|
|
574 | (2) |
|
10.10.2 Regenerator Matrix Heat Transfer and Friction Factor Correlations |
|
|
576 | (6) |
|
|
582 | (8) |
|
10.12 Regenerator Design Example |
|
|
590 | (17) |
|
10.12.1 Problem Statement |
|
|
590 | (1) |
|
10.12.2 Calculation of the NTU |
|
|
591 | (2) |
|
10.12.3 Calculation of the Convective Heat Transfer Coefficients |
|
|
593 | (1) |
|
10.12.4 Heat Transfer Surface Area |
|
|
594 | (1) |
|
10.12.5 Recalculate the Matrix Capacity Rate Ratio |
|
|
595 | (1) |
|
|
596 | (1) |
|
|
596 | (8) |
|
|
604 | (3) |
Appendix A Conversion Factors--Conventional Units to SI Units |
|
607 | (2) |
Appendix B Properties of Saturated Liquids (SI Units) |
|
609 | (6) |
Appendix C Properties of Saturated Vapors (SI Units) |
|
615 | (6) |
Appendix D Properties of Gases at 1 atm (SI Units) |
|
621 | (8) |
Appendix E Bessel Functions |
|
629 | (14) |
Appendix F Laplace Transforms |
|
643 | (8) |
Appendix G Getting Started with EES---Introduction |
|
651 | |