Atnaujinkite slapukų nuostatas

Cryostat Design: Case Studies, Principles and Engineering 1st ed. 2016 [Kietas viršelis]

Edited by
  • Formatas: Hardback, 280 pages, aukštis x plotis: 235x155 mm, weight: 6282 g, 147 Illustrations, color; 50 Illustrations, black and white; XVII, 280 p. 197 illus., 147 illus. in color., 1 Hardback
  • Serija: International Cryogenics Monograph Series
  • Išleidimo metai: 22-Aug-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319311484
  • ISBN-13: 9783319311487
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 280 pages, aukštis x plotis: 235x155 mm, weight: 6282 g, 147 Illustrations, color; 50 Illustrations, black and white; XVII, 280 p. 197 illus., 147 illus. in color., 1 Hardback
  • Serija: International Cryogenics Monograph Series
  • Išleidimo metai: 22-Aug-2016
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319311484
  • ISBN-13: 9783319311487
Kitos knygos pagal šią temą:
This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. 

It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are leading experts in the field, most of whom participated in the design of the cryostats being described. The concluding chapter offers an overview of lessons learned and summarises some key hints and tips for practical cryostat design. 

The book will help the reader to expand their knowledge of many disciplines required for good cryostat design, including the cryogenic properties of materials, heat transfer and thermal insulation, instrumentation, safety, structures and seals.
1 Principles of Cryostat Design
1(46)
J.G. Weisend
1.1 Cryostat Requirements
1(3)
1.2 Cryogenic Properties of Materials
4(7)
1.2.1 Thermal Contraction
5(1)
1.2.2 Thermal Conductivity
6(3)
1.2.3 Heat Capacity
9(1)
1.2.4 Material Strength
10(1)
1.3 Thermal Insulation and Heat Transfer
11(6)
1.3.1 Reducing Conduction Heat Transfer
11(1)
1.3.2 Reducing Convection Heat Transfer
11(1)
1.3.3 Reducing Radiation Heat Transfer
12(3)
1.3.4 Other Insulation Approaches
15(2)
1.4 Structural Supports for Cryostats
17(7)
1.4.1 Alignment Approaches
18(1)
1.4.2 Suspension of Components from a Room Temperature Top Flange
19(1)
1.4.3 Space Frames
20(3)
1.4.4 Support Posts
23(1)
1.4.5 Supports in Space Cryogenics
23(1)
1.5 Instrumentation
24(7)
1.5.1 Temperature Measurement
24(3)
1.5.2 Pressure Measurement
27(1)
1.5.3 Flow Measurement
27(1)
1.5.4 Level Measurement
28(1)
1.5.5 Installation, Wiring, Heat Sinking and Feedthroughs
28(2)
1.5.6 Commercial Availability of Instrumentation Systems
30(1)
1.5.7 Best Practices for Cryostat Instrumentation
31(1)
1.6 Seals and Connections
31(4)
1.7 Transfer Lines
35(3)
1.8 Safety
38(2)
1.9 Thermoacoustic Oscillations
40(2)
1.10 Prototyping and Series Testing
42(5)
References
42(5)
2 SSC Collider Dipole Cryostat
47(20)
Thomas H. Nicol
2.1 Introduction
47(2)
2.2 Vacuum Vessel
49(1)
2.3 Thermal Radiation Shields
50(2)
2.4 Multilayer Insulation
52(1)
2.5 Cryogenic Piping
53(2)
2.6 Suspension System
55(2)
2.7 Interconnect
57(2)
2.8 Test Results
59(5)
2.9 Summary
64(3)
References
65(2)
3 Twenty-Three Kilometres of Superfluid Helium Cryostats for the Superconducting Magnets of the Large Hadron Collider (LHC)
67(28)
Philippe Lebrun
3.2 Feasibility of a Large Distributed Superfluid Helium System
70(5)
3.3 Prototype Cryostats and String Tests
75(8)
3.4 Industrial Series Production, Installation and Commissioning
83(8)
3.5 Concluding Remarks
91(4)
References
92(3)
4 The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration
95(22)
Michael DiPirro
4.1 Introduction
95(3)
4.2 Design Considerations
98(1)
4.2.1 Structural Requirements
98(1)
4.3 Dewar and Cryostat Details
99(4)
4.3.1 Dewar Fabrication Details
99(2)
4.3.2 Cryostat Details
101(2)
4.4 Components
103(7)
4.4.1 Development Notes
103(1)
4.4.2 Phase Separation
103(2)
4.4.3 Liquid Acquisition
105(2)
4.4.4 Thermomechanical (Fountain Effect) Pumps
107(2)
4.4.5 Cryogenic Stepper-Motor Valves
109(1)
4.4.6 Cryogenic Relief Valves
110(1)
4.5 Safety
110(3)
4.6 Working with SHOOT on the Ground
113(1)
4.7 On-Orbit Operations
114(1)
4.8 Summary
115(2)
References
115(2)
5 TESLA & ILC Cryomodules
117(30)
T.J. Peterson
J.G. Weisend
5.1 Introduction
117(1)
5.2 Definitions
118(2)
5.3 Functional Requirements Summary
120(1)
5.4 Cryomodule Mechanical Design
120(9)
5.4.1 Cryomodule Major Components and Features
120(9)
5.4.2 Cryomodule Weight
129(1)
5.4.3 Major Interfaces
129(1)
5.5 Cryomodule Vacuum Design and Vacuum Vessel
129(2)
5.6 Cryomodule Thermal Design and Helium Flow Design
131(8)
5.6.1 Major Thermal Design Features
131(2)
5.6.2 Design for Large 2 K Heat Transport and Helium Flow
133(2)
5.6.3 Pressure Drop Analyses
135(1)
5.6.4 Typical TESLA-Style Cryomodule Maximum Allowable Working Pressures
136(1)
5.6.5 Instrumentation
137(1)
5.6.6 Cryomodule Test Requirements
137(1)
5.6.7 Pressure Stability at the 2 K Level
137(2)
5.7 Cryomodule Helium Inventory
139(1)
5.8 Early Results from the TESLA Cryomodules
139(4)
5.9 Modifications for CW Operation in the LCLS-II Linac
143(1)
5.10 Summary
143(4)
References
144(3)
6 Segmented SRF Cryomodules
147(48)
E. Daly
Thomas H. Nicol
J. Preble
6.1 Introduction
147(2)
6.2 C20 Cryomodule Design for CEBAF
149(12)
6.2.1 Introduction
149(1)
6.2.2 Modularity and Segmentation
149(1)
6.2.3 Requirements
150(1)
6.2.4 Design Description and Choices
150(3)
6.2.5 Cryogenic System Interfaces
153(1)
6.2.6 Vacuum Interfaces
153(1)
6.2.7 Heat Load Estimates
154(1)
6.2.8 Cavity
154(1)
6.2.9 Cavity Pair
154(1)
6.2.10 Tuner
155(1)
6.2.11 Helium Vessel
155(1)
6.2.12 Input Coupler
156(1)
6.2.13 HOM Loads
156(1)
6.2.14 Magnetic Shields---Inner and Outer
157(1)
6.2.15 Thermal Shield and Multilayer Insulation
157(1)
6.2.16 Vacuum Vessel
158(1)
6.2.17 Cryounit
158(1)
6.2.18 Instrumentation
159(1)
6.2.19 Final Assembly
160(1)
6.2.20 Status
160(1)
6.3 The Spallation Neutron Source (SNS) Cryomodule
161(17)
6.3.1 Introduction
161(1)
6.3.2 Cavity String
162(2)
6.3.3 Cryomodule
164(2)
6.3.4 Cryomodule Heat Loads and Thermal Design
166(7)
6.3.5 Thermal Performance of the SNS Cryomodule
173(5)
6.4 The CEBAF C100 Energy Upgrade Cryomodule
178(7)
6.4.1 Introduction
178(1)
6.4.2 Lessons Learned from C20 Experience
178(2)
6.4.3 Cavity
180(1)
6.4.4 Cavity Frequency Tuner
181(1)
6.4.5 Cold Mass and Space frame
181(2)
6.4.6 Vacuum Vessel
183(1)
6.4.7 End Cans
184(1)
6.4.8 C100 Performance
185(1)
6.5 SSR1 Cryomodule Design for PXIE
185(10)
6.5.1 Introduction
185(1)
6.5.2 Cryomodule Design
186(5)
6.5.3 Final Assembly
191(1)
6.5.4 Status and Plans
192(1)
References
193(2)
7 Special Topics in Cryostat Design
195(24)
Wolfgang Stautner
7.1 Boil off Minimization for Cryostats Without a Cryocooler
195(6)
7.1.1 Discussion
199(1)
7.1.2 Pitfalls
200(1)
7.2 Cryocooler Integration
201(7)
7.2.1 Cryocooler Integration---Options Overview
201(1)
7.2.2 Cryocooler Integration Examples
202(1)
7.2.3 Schematics and Options of Cryocooler Integration---Overview
203(4)
7.2.4 Cryocooler Integration Techniques for Special Applications
207(1)
7.3 Designing with Inclined Tubes in Cryogenic Systems
208(4)
7.3.1 Pitfalls
212(1)
7.4 Cryogenics for Cryostats: Pressure Rise
212(4)
7.4.1 Quench Pressure Rise in Cryostats and Quench Duct Sizing---A Modeling Example
213(3)
7.5 Advanced Cryostat Cryogenics---Carbon Footprint Considerations
216(3)
References
216(3)
8 Design and Operation of a Large, Low Background 50 mK Cryostat for the Cryogenic Dark Matter Search
219(22)
Richard L. Schmitt
8.1 Introduction
219(1)
8.2 Physics Detectors and Towers
219(2)
8.3 Cryogenic System General Description
221(1)
8.4 Dilution Refrigerator Introduction
222(1)
8.5 Icebox General Description
222(4)
8.5.1 Icebox Cans
222(3)
8.5.2 Suspension
225(1)
8.5.3 C-Stems and Tails
225(1)
8.6 E-Stem
226(3)
8.6.1 Thermal Contraction
226(1)
8.6.2 Materials, Radiopurity
227(1)
8.6.3 Fabrication
227(1)
8.6.4 Underground Assembly
228(1)
8.7 Thermal Model
229(2)
8.7.1 Thermal Conductivity
229(1)
8.7.2 Joint Conductance
230(1)
8.8 Heat Load
231(1)
8.9 Detector Signal Feedthrough
231(1)
8.10 Dilution Refrigerator
232(1)
8.11 Liquid Transfer Systems
232(1)
8.12 Liquefier Addition
233(2)
8.13 External Cold Trap
235(1)
8.14 E-Stem Cryocooler
235(1)
8.15 Insulating Vacuum
236(1)
8.16 Automation and Control
236(1)
8.17 Cryogenic Operation
237(1)
8.18 Lessons Learned
237(4)
8.18.1 Cryogenic System Assembly and Testing
237(1)
8.18.2 Wiring
237(1)
8.18.3 Mixture Purification
237(1)
8.18.4 Micro Vibrations
238(1)
8.18.5 Can Supports
238(1)
8.18.6 Inner Vacuum, Yes or No?
238(1)
References
239(2)
9 Cryogenic Transfer Lines
241(34)
Jaroslaw Fydrych
9.1 Introduction
241(6)
9.2 Cryoline Routing and Modularization
247(2)
9.3 Cryoline Cross-Section Arrangements
249(4)
9.4 Supporting Structures
253(3)
9.5 Thermal Contraction Compensation
256(2)
9.6 Materials
258(1)
9.7 Manufacturing and Installation
258(1)
9.8 Case Study: XFEL/AMTF Cryogenic Transfer Line
259(16)
9.8.1 Technical Requirements
260(2)
9.8.2 Design
262(4)
9.8.3 Manufacturing the Cryoline Modules
266(1)
9.8.4 Installation
267(5)
9.8.5 Commissioning and Performance
272(1)
References
272(3)
10 Guidelines for Successful Cryostat Design
275(2)
J.G. Weisend
10.1 Introduction
275(1)
10.2 Guidelines
275(1)
10.3 A Final Comment
276(1)
Index 277
John Weisend is currently a Senior Scientist and Group Leader for Specialised Technical Services at The European Spallation Source. He received his Ph.D. in Nuclear Engineering & Engineering Physics from the University of Wisconsin Madison, where he investigated engineering applications of He II. He has worked at the SSC Laboratory, the Centre DEtudes Nucleaires Grenoble, the Deutsches Elecktronen-Synchrotron Laboratory (DESY), the Stanford Linear Accelerator Laboratory (SLAC), the National Science Foundation and Michigan State University

Dr. Weisends research interests include He II and large scale accelerator cryogenics. He is the Chairman of the Board of Directors of the Cryogenic Society of America (CSA) He has led the CSA Short Course Program since 2001. He is Chief Technical Editor of Advances in Cryogenic Engineering. In addition to co-authoring more than 60 technical papers, Dr. Weisend is the co-author (with N. Filina) of Cryogenic Two-Phase Flow and theeditor of the Handbook of Cryogenic Engineering.