|
1 Principles of Cryostat Design |
|
|
1 | (46) |
|
|
1.1 Cryostat Requirements |
|
|
1 | (3) |
|
1.2 Cryogenic Properties of Materials |
|
|
4 | (7) |
|
1.2.1 Thermal Contraction |
|
|
5 | (1) |
|
1.2.2 Thermal Conductivity |
|
|
6 | (3) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.3 Thermal Insulation and Heat Transfer |
|
|
11 | (6) |
|
1.3.1 Reducing Conduction Heat Transfer |
|
|
11 | (1) |
|
1.3.2 Reducing Convection Heat Transfer |
|
|
11 | (1) |
|
1.3.3 Reducing Radiation Heat Transfer |
|
|
12 | (3) |
|
1.3.4 Other Insulation Approaches |
|
|
15 | (2) |
|
1.4 Structural Supports for Cryostats |
|
|
17 | (7) |
|
1.4.1 Alignment Approaches |
|
|
18 | (1) |
|
1.4.2 Suspension of Components from a Room Temperature Top Flange |
|
|
19 | (1) |
|
|
20 | (3) |
|
|
23 | (1) |
|
1.4.5 Supports in Space Cryogenics |
|
|
23 | (1) |
|
|
24 | (7) |
|
1.5.1 Temperature Measurement |
|
|
24 | (3) |
|
1.5.2 Pressure Measurement |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
1.5.5 Installation, Wiring, Heat Sinking and Feedthroughs |
|
|
28 | (2) |
|
1.5.6 Commercial Availability of Instrumentation Systems |
|
|
30 | (1) |
|
1.5.7 Best Practices for Cryostat Instrumentation |
|
|
31 | (1) |
|
1.6 Seals and Connections |
|
|
31 | (4) |
|
|
35 | (3) |
|
|
38 | (2) |
|
1.9 Thermoacoustic Oscillations |
|
|
40 | (2) |
|
1.10 Prototyping and Series Testing |
|
|
42 | (5) |
|
|
42 | (5) |
|
2 SSC Collider Dipole Cryostat |
|
|
47 | (20) |
|
|
|
47 | (2) |
|
|
49 | (1) |
|
2.3 Thermal Radiation Shields |
|
|
50 | (2) |
|
2.4 Multilayer Insulation |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (2) |
|
|
57 | (2) |
|
|
59 | (5) |
|
|
64 | (3) |
|
|
65 | (2) |
|
3 Twenty-Three Kilometres of Superfluid Helium Cryostats for the Superconducting Magnets of the Large Hadron Collider (LHC) |
|
|
67 | (28) |
|
|
3.2 Feasibility of a Large Distributed Superfluid Helium System |
|
|
70 | (5) |
|
3.3 Prototype Cryostats and String Tests |
|
|
75 | (8) |
|
3.4 Industrial Series Production, Installation and Commissioning |
|
|
83 | (8) |
|
|
91 | (4) |
|
|
92 | (3) |
|
4 The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration |
|
|
95 | (22) |
|
|
|
95 | (3) |
|
4.2 Design Considerations |
|
|
98 | (1) |
|
4.2.1 Structural Requirements |
|
|
98 | (1) |
|
4.3 Dewar and Cryostat Details |
|
|
99 | (4) |
|
4.3.1 Dewar Fabrication Details |
|
|
99 | (2) |
|
|
101 | (2) |
|
|
103 | (7) |
|
|
103 | (1) |
|
|
103 | (2) |
|
|
105 | (2) |
|
4.4.4 Thermomechanical (Fountain Effect) Pumps |
|
|
107 | (2) |
|
4.4.5 Cryogenic Stepper-Motor Valves |
|
|
109 | (1) |
|
4.4.6 Cryogenic Relief Valves |
|
|
110 | (1) |
|
|
110 | (3) |
|
4.6 Working with SHOOT on the Ground |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (2) |
|
|
115 | (2) |
|
5 TESLA & ILC Cryomodules |
|
|
117 | (30) |
|
|
|
|
117 | (1) |
|
|
118 | (2) |
|
5.3 Functional Requirements Summary |
|
|
120 | (1) |
|
5.4 Cryomodule Mechanical Design |
|
|
120 | (9) |
|
5.4.1 Cryomodule Major Components and Features |
|
|
120 | (9) |
|
|
129 | (1) |
|
|
129 | (1) |
|
5.5 Cryomodule Vacuum Design and Vacuum Vessel |
|
|
129 | (2) |
|
5.6 Cryomodule Thermal Design and Helium Flow Design |
|
|
131 | (8) |
|
5.6.1 Major Thermal Design Features |
|
|
131 | (2) |
|
5.6.2 Design for Large 2 K Heat Transport and Helium Flow |
|
|
133 | (2) |
|
5.6.3 Pressure Drop Analyses |
|
|
135 | (1) |
|
5.6.4 Typical TESLA-Style Cryomodule Maximum Allowable Working Pressures |
|
|
136 | (1) |
|
|
137 | (1) |
|
5.6.6 Cryomodule Test Requirements |
|
|
137 | (1) |
|
5.6.7 Pressure Stability at the 2 K Level |
|
|
137 | (2) |
|
5.7 Cryomodule Helium Inventory |
|
|
139 | (1) |
|
5.8 Early Results from the TESLA Cryomodules |
|
|
139 | (4) |
|
5.9 Modifications for CW Operation in the LCLS-II Linac |
|
|
143 | (1) |
|
|
143 | (4) |
|
|
144 | (3) |
|
6 Segmented SRF Cryomodules |
|
|
147 | (48) |
|
|
|
|
|
147 | (2) |
|
6.2 C20 Cryomodule Design for CEBAF |
|
|
149 | (12) |
|
|
149 | (1) |
|
6.2.2 Modularity and Segmentation |
|
|
149 | (1) |
|
|
150 | (1) |
|
6.2.4 Design Description and Choices |
|
|
150 | (3) |
|
6.2.5 Cryogenic System Interfaces |
|
|
153 | (1) |
|
|
153 | (1) |
|
6.2.7 Heat Load Estimates |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
6.2.14 Magnetic Shields---Inner and Outer |
|
|
157 | (1) |
|
6.2.15 Thermal Shield and Multilayer Insulation |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
6.3 The Spallation Neutron Source (SNS) Cryomodule |
|
|
161 | (17) |
|
|
161 | (1) |
|
|
162 | (2) |
|
|
164 | (2) |
|
6.3.4 Cryomodule Heat Loads and Thermal Design |
|
|
166 | (7) |
|
6.3.5 Thermal Performance of the SNS Cryomodule |
|
|
173 | (5) |
|
6.4 The CEBAF C100 Energy Upgrade Cryomodule |
|
|
178 | (7) |
|
|
178 | (1) |
|
6.4.2 Lessons Learned from C20 Experience |
|
|
178 | (2) |
|
|
180 | (1) |
|
6.4.4 Cavity Frequency Tuner |
|
|
181 | (1) |
|
6.4.5 Cold Mass and Space frame |
|
|
181 | (2) |
|
|
183 | (1) |
|
|
184 | (1) |
|
|
185 | (1) |
|
6.5 SSR1 Cryomodule Design for PXIE |
|
|
185 | (10) |
|
|
185 | (1) |
|
|
186 | (5) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (2) |
|
7 Special Topics in Cryostat Design |
|
|
195 | (24) |
|
|
7.1 Boil off Minimization for Cryostats Without a Cryocooler |
|
|
195 | (6) |
|
|
199 | (1) |
|
|
200 | (1) |
|
7.2 Cryocooler Integration |
|
|
201 | (7) |
|
7.2.1 Cryocooler Integration---Options Overview |
|
|
201 | (1) |
|
7.2.2 Cryocooler Integration Examples |
|
|
202 | (1) |
|
7.2.3 Schematics and Options of Cryocooler Integration---Overview |
|
|
203 | (4) |
|
7.2.4 Cryocooler Integration Techniques for Special Applications |
|
|
207 | (1) |
|
7.3 Designing with Inclined Tubes in Cryogenic Systems |
|
|
208 | (4) |
|
|
212 | (1) |
|
7.4 Cryogenics for Cryostats: Pressure Rise |
|
|
212 | (4) |
|
7.4.1 Quench Pressure Rise in Cryostats and Quench Duct Sizing---A Modeling Example |
|
|
213 | (3) |
|
7.5 Advanced Cryostat Cryogenics---Carbon Footprint Considerations |
|
|
216 | (3) |
|
|
216 | (3) |
|
8 Design and Operation of a Large, Low Background 50 mK Cryostat for the Cryogenic Dark Matter Search |
|
|
219 | (22) |
|
|
|
219 | (1) |
|
8.2 Physics Detectors and Towers |
|
|
219 | (2) |
|
8.3 Cryogenic System General Description |
|
|
221 | (1) |
|
8.4 Dilution Refrigerator Introduction |
|
|
222 | (1) |
|
8.5 Icebox General Description |
|
|
222 | (4) |
|
|
222 | (3) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (3) |
|
8.6.1 Thermal Contraction |
|
|
226 | (1) |
|
8.6.2 Materials, Radiopurity |
|
|
227 | (1) |
|
|
227 | (1) |
|
8.6.4 Underground Assembly |
|
|
228 | (1) |
|
|
229 | (2) |
|
8.7.1 Thermal Conductivity |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (1) |
|
8.9 Detector Signal Feedthrough |
|
|
231 | (1) |
|
8.10 Dilution Refrigerator |
|
|
232 | (1) |
|
8.11 Liquid Transfer Systems |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (1) |
|
8.16 Automation and Control |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (4) |
|
8.18.1 Cryogenic System Assembly and Testing |
|
|
237 | (1) |
|
|
237 | (1) |
|
8.18.3 Mixture Purification |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
8.18.6 Inner Vacuum, Yes or No? |
|
|
238 | (1) |
|
|
239 | (2) |
|
9 Cryogenic Transfer Lines |
|
|
241 | (34) |
|
|
|
241 | (6) |
|
9.2 Cryoline Routing and Modularization |
|
|
247 | (2) |
|
9.3 Cryoline Cross-Section Arrangements |
|
|
249 | (4) |
|
9.4 Supporting Structures |
|
|
253 | (3) |
|
9.5 Thermal Contraction Compensation |
|
|
256 | (2) |
|
|
258 | (1) |
|
9.7 Manufacturing and Installation |
|
|
258 | (1) |
|
9.8 Case Study: XFEL/AMTF Cryogenic Transfer Line |
|
|
259 | (16) |
|
9.8.1 Technical Requirements |
|
|
260 | (2) |
|
|
262 | (4) |
|
9.8.3 Manufacturing the Cryoline Modules |
|
|
266 | (1) |
|
|
267 | (5) |
|
9.8.5 Commissioning and Performance |
|
|
272 | (1) |
|
|
272 | (3) |
|
10 Guidelines for Successful Cryostat Design |
|
|
275 | (2) |
|
|
|
275 | (1) |
|
|
275 | (1) |
|
|
276 | (1) |
Index |
|
277 | |