Atnaujinkite slapukų nuostatas

El. knyga: Current Methods for Life-Cycle Analyses of Low-Carbon Transportation Fuels in the United States

  • Formatas: 236 pages
  • Išleidimo metai: 26-Oct-2022
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309273961
  • Formatas: 236 pages
  • Išleidimo metai: 26-Oct-2022
  • Leidėjas: National Academies Press
  • Kalba: eng
  • ISBN-13: 9780309273961

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Transportation is the largest source of greenhouse gas emissions in the United States, with petroleum accounting for 90 percent of transportation fuels. Policymakers encounter a range of questions as they consider low-carbon fuel standards to reduce emissions, including total emissions released from production to use of a fuel or the potential consequences of a policy. Life-cycle assessment is an essential tool for addressing these questions. This report provides researchers and practitioners with a toolkit for applying life-cycle assessment to estimate greenhouse gas emissions, including identification of the best approach to use for a stated policy goal, how to reduce uncertainty and variability through verification and certification, and the core assumptions that can be applied to various fuel types. Policymakers should still use a tailored approach for each fuel type, given that petroleum-based ground, air, and marine transportation fuels necessitate different considerations than alternative fuels including biofuels, hydrogen, and electricity. Ultimately, life-cycle assessments should clearly document what assumptions and methods are used to ensure transparency.

Table of Contents



Front Matter Summary Part I: Background and Policy Context for Life-Cycle Analysis 1 Introduction and Policy Context 2 Fundamentals of Life-Cycle Assessment 3 Life-Cycle Assessment in a Low-Carbon Fuel Standard Policy Part II: General Considerations for Life-Cycle Analysis 4 Key Considerations: Direct and Indirect Effects, Uncertainty, Variability, and Scale of Production 5 Verification 6 Specific Methodological Issues Relevant to a Low-Carbon Fuel Standard Part III: Specific Fuel Issues for Life-Cycle Analysis 7 Fossil and Gaseous Fuels for Road Transportation 8 Aviation and Maritime Fuels 9 Biofuels 10 Electricity as a Vehicle Fuel Appendix A: Conclusions and Recommendations Appendix B: Committee Members' Biographical Sketches Appendix C: Open Session Agendas
Acronyms xv
Summary 1(12)
PART I BACKGROUND AND POLICY CONTEXT FOR LIFE-CYCLE ANALYSIS
1 Introduction And Policy Context
13(5)
Transportation Emission Reduction Policies in the United States
13(1)
Life-Cycle Analysis to Assess Greenhouse Gas Emissions
14(1)
The Committee's Charge and Its Approach
14(2)
Organization of the Report
16(1)
References
16(2)
2 Fundamentals Of Life-Cycle Assessment
18(17)
The Four Phases of Conducting a Life-Cycle Assessment
18(2)
Two Broad Categories of Life-Cycle Assessment
20(2)
Attributional Life-Cycle Assessment
22(4)
Consequential Life-Cycle Assessment
26(1)
Comparison of Attributional and Consequential Life-Cycle Analysis
27(5)
References
32(3)
3 Life-Cycle Assessment In A Low-Carbon Fuel Standard Policy
35(14)
Historical Context
35(1)
Low-Carbon Fuel Policies in the United States, Europe, and Brazil
36(5)
Considerations in Applying Attributional Life-Cycle Assessment and Consequential
Life-Cycle Assessment in Low-Carbon Fuel Standards
41(3)
Conclusions and Recommendation on the Use of Different Life-Cycle
Assessment Approaches in Low-Carbon Fuel Standards
44(2)
Recommendations for Research
46(1)
References
46(3)
PART II GENERAL CONSIDERATIONS FOR LIFE-CYCLE ANALYSIS
4 Key Considerations: Direct And Indirect Effects, Uncertainty, Variability, And Scale Of Production
49(25)
Direct and Indirect Effects
49(5)
Uncertainty and Variability
54(13)
Scale of Production
67(2)
References
69(5)
5 Verification
74(19)
The Importance of Verification
74(1)
Current Use of Verification
75(6)
Challenges in Implementing Verification Approaches
81(4)
Future Technology for Verification
85(3)
References
88(5)
6 Specific Methodological Issues Relevant To A Low-Carbon Fuel Standard
93(33)
Allocation to and from Other Products
93(4)
Negative Emissions
97(1)
Biogenic Emissions
98(8)
Indicators, Other Climate Forcers, and Timing of Emissions
106(3)
Vehicle-Fuel Combinations and Efficiencies
109(7)
References
116(10)
PART III SPECIFIC FUEL ISSUES FOR LIFE-CYCLE ANALYSIS
7 Fossil And Gaseous Fuels For Road Transportation
126(16)
Liquid Fossil Fuels
126(4)
Gaseous Fossil Fuels and Hydrogen
130(9)
References
139(3)
8 Aviation And Maritime Fuels
142(15)
Aviation Fuels
142(10)
Maritime Fuels
152(2)
References
154(3)
9 Biofuels
157(29)
Biofuel Feedstocks and Finished Fuels
158(2)
Feedstocks for Biofuel Production
160(1)
Key Considerations in Biofuel Life-Cycle Analysis
161(3)
Carbon Emissions and Sequestration from Biorefineries
164(6)
Quantifying Market-Mediated Emissions from Biofuels
170(7)
References
177(9)
10 Electricity As A Vehicle Fuel
186(17)
Comparing Attributional and Consequential Life-Cycle Assessment for Electricity
186(4)
Approaches to Consequential Life-Cycle Assessment for Plug-In Vehicle Charging Emissions
190(5)
Upstream Emissions
195(1)
Uncertainty and Dynamics
195(1)
Energy Efficiency
196(1)
Data Sources for Research
196(3)
Effects of Public Policy on Consequential Plug-In Electric Vehicle Emissions
199(1)
References
199(4)
APPENDIXES
A Conclusions And Recommendations
203(12)
B Committee Members' Biographical Sketches
215(4)
C Open Session Agendas
219