|
|
xi | |
Preface |
|
xiii | |
|
1 Fundamentals of membrane technology |
|
|
1 | (24) |
|
|
|
|
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2 Membrane classification |
|
|
2 | (4) |
|
|
3 | (1) |
|
1.2.2 Inorganic membranes |
|
|
3 | (1) |
|
1.2.3 Mixed matrix membranes |
|
|
4 | (2) |
|
|
6 | (7) |
|
1.3.1 Pressure-driven membrane technology |
|
|
7 | (1) |
|
1.3.2 Concentration-driven membrane technology |
|
|
8 | (2) |
|
1.3.3 Electrically driven membrane technology |
|
|
10 | (2) |
|
1.3.4 Thermally driven membrane technology |
|
|
12 | (1) |
|
1.4 Concentration polarization term |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.6 New advances in membrane technologies |
|
|
15 | (3) |
|
1.6.1 Membrane modification |
|
|
15 | (1) |
|
1.6.2 Novel membrane reactors |
|
|
16 | (1) |
|
1.6.3 Membrane contactors |
|
|
17 | (1) |
|
1.7 Conclusions and future trends |
|
|
18 | (7) |
|
|
19 | (6) |
|
2 Transport phenomena in ultrafiltration/microfiltration membranes |
|
|
25 | (24) |
|
|
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (3) |
|
2.2 On membrane material and its preparation |
|
|
29 | (5) |
|
2.2.1 Membrane preparation by conventional materials |
|
|
29 | (2) |
|
2.2.2 Membrane preparation by nanosized materials |
|
|
31 | (2) |
|
2.2.3 Other membrane preparation methods |
|
|
33 | (1) |
|
|
34 | (5) |
|
2.3.1 The mass transport through a flat-sheet membrane |
|
|
35 | (4) |
|
2.4 Results and discussions |
|
|
39 | (4) |
|
2.4.1 Simultaneous transport through the polarization and membrane layer, across a membrane |
|
|
39 | (4) |
|
2.5 Conclusion and future trends |
|
|
43 | (6) |
|
|
44 | (1) |
|
|
44 | (5) |
|
3 Transport phenomena in reverse osmosis/nanofiltration membranes |
|
|
49 | (42) |
|
|
|
|
49 | (2) |
|
|
51 | (5) |
|
3.2 Statistical---mechanical model by Mason and Lonsdale |
|
|
56 | (1) |
|
3.3 Water partitioning: the osmotic equilibrium |
|
|
57 | (1) |
|
3.4 Reverse osmosis models |
|
|
57 | (8) |
|
3.4.1 The solution---diffusion model |
|
|
59 | (2) |
|
3.4.2 The three-parameter model |
|
|
61 | (2) |
|
3.4.3 Conclusive remarks and recommendations for reverse osmosis models |
|
|
63 | (2) |
|
3.5 Nanofiltration modeling: the porous vision of the Donnan-steric-pore-and-dielectric-exclusion model for aqueous solutions |
|
|
65 | (8) |
|
3.5.1 Mass transfer across the membrane pores |
|
|
66 | (7) |
|
3.6 Application of Donnan-Steric-pore-and-dielectric-exclusion modeling in nanofiltration: case studies |
|
|
73 | (10) |
|
|
73 | (5) |
|
3.6.2 Electrolyte solutions |
|
|
78 | (5) |
|
3.7 Conclusions and future trends |
|
|
83 | (8) |
|
Appendix: Reformulation of the solution---diffusion model |
|
|
83 | (1) |
|
|
84 | (7) |
|
4 Transport phenomena in electrodialysis/reverse electrodialysis processes |
|
|
91 | (20) |
|
|
|
|
|
91 | (1) |
|
|
92 | (1) |
|
4.2 Electrodialysis process |
|
|
93 | (6) |
|
4.2.1 Description of process |
|
|
94 | (2) |
|
4.2.2 Theory of transport phenomena |
|
|
96 | (2) |
|
4.2.3 Literature on electrodialysis process |
|
|
98 | (1) |
|
4.3 Overview of reverse electrodialysis process |
|
|
99 | (6) |
|
4.3.1 Description of the process |
|
|
100 | (1) |
|
4.3.2 Theory of transport phenomena |
|
|
101 | (2) |
|
4.3.3 Literature on reverse electrodialysis process |
|
|
103 | (2) |
|
4.4 Conclusion and future trends |
|
|
105 | (6) |
|
|
106 | (5) |
|
5 Transport phenomena in membrane distillation processes |
|
|
111 | (18) |
|
|
|
|
|
|
|
111 | (1) |
|
|
111 | (2) |
|
5.2 Mass and heat transfers in the membrane distillation process |
|
|
113 | (11) |
|
5.2.1 Mass transfer through the membrane |
|
|
114 | (4) |
|
5.2.2 Heat transfers through the membrane |
|
|
118 | (2) |
|
5.2.3 Temperature polarization |
|
|
120 | (1) |
|
5.2.4 Influence of module and membrane configurations on mass and heat transfers |
|
|
121 | (3) |
|
5.3 Conclusion and future trends |
|
|
124 | (5) |
|
|
124 | (1) |
|
|
125 | (4) |
|
6 Transport phenomena in dialysis processes |
|
|
129 | (36) |
|
|
|
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (6) |
|
6.1.1 Brief history of dialysis |
|
|
134 | (2) |
|
|
136 | (4) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
6.3 Role of semipermeable membrane in artificial kidney |
|
|
140 | (4) |
|
6.4 Mathematical models of kidney transport phenomena |
|
|
144 | (15) |
|
|
145 | (6) |
|
6.4.2 Patient device models |
|
|
151 | (1) |
|
6.4.3 Single-compartment model |
|
|
152 | (2) |
|
6.4.4 Multicompartment model |
|
|
154 | (2) |
|
6.4.5 Modeling of regenerative dialysis |
|
|
156 | (3) |
|
6.5 Conclusion and future trends |
|
|
159 | (6) |
|
|
159 | (6) |
|
7 Transport phenomena in pervaporation |
|
|
165 | (28) |
|
|
|
|
165 | (1) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (1) |
|
|
167 | (3) |
|
|
170 | (15) |
|
|
170 | (2) |
|
|
172 | (2) |
|
7.3.3 Solution---diffusion model |
|
|
174 | (6) |
|
7.3.4 Concentration polarization |
|
|
180 | (2) |
|
|
182 | (2) |
|
7.3.6 Temperature polarization |
|
|
184 | (1) |
|
7.4 Application to process simulation as scaleup tool |
|
|
185 | (3) |
|
7.5 Conclusions and future trends |
|
|
188 | (5) |
|
|
189 | (4) |
|
8 Transport phenomena in gas membrane separations |
|
|
193 | (16) |
|
Foroogh Mohseni Ghaleh Ghazi |
|
|
|
|
|
193 | (1) |
|
|
193 | (1) |
|
|
194 | (2) |
|
8.2 Membrane gas separation |
|
|
196 | (2) |
|
8.3 Fundamentals equations of membrane transport |
|
|
198 | (1) |
|
8.4 Permeation of gases through membranes |
|
|
199 | (4) |
|
8.4.1 Gas permeation in porous membranes |
|
|
200 | (1) |
|
8.4.2 Gas permeation in nonporous membranes |
|
|
200 | (3) |
|
8.5 Strategies to enhance gas permeation in membranes |
|
|
203 | (3) |
|
8.5.1 Gas transport models in nanocomposite membrane modules |
|
|
204 | (2) |
|
8.6 Conclusions and future trends |
|
|
206 | (3) |
|
|
207 | (2) |
|
9 Transport phenomena in membrane contactor systems |
|
|
209 | (22) |
|
|
|
Seyed Mohammad Esmaeil Zakeri |
|
|
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (2) |
|
9.1.1 Advantages and disadvantages of membrane contactors |
|
|
211 | (1) |
|
9.1.2 Application of membrane contactors in different operating units |
|
|
211 | (1) |
|
|
212 | (5) |
|
9.2.1 Transport phenomena in liquid---liquid membrane contactor systems |
|
|
212 | (1) |
|
9.2.2 Transport phenomena in gas---liquid membrane contactor systems |
|
|
213 | (4) |
|
9.3 Mass transfer in shell-and-tube hollow fiber membrane contactor |
|
|
217 | (4) |
|
9.3.1 Mass transport in shell side |
|
|
218 | (2) |
|
9.3.2 Mass transport inside the fiber |
|
|
220 | (1) |
|
9.3.3 Mass transport in membrane |
|
|
221 | (1) |
|
9.4 Membrane wetting and mass transfer resistance |
|
|
221 | (1) |
|
9.5 Novel approaches to membrane contactor systems |
|
|
222 | (1) |
|
9.6 Conclusions and future trends |
|
|
223 | (8) |
|
|
227 | (4) |
|
10 Transport phenomena in drug delivery membrane systems |
|
|
231 | (16) |
|
|
|
|
231 | (1) |
|
|
231 | (2) |
|
10.1.1 Definition of a membrane |
|
|
231 | (2) |
|
10.1.2 Historical background |
|
|
233 | (1) |
|
10.2 General classification of membranes |
|
|
233 | (1) |
|
10.2.1 Membrane classification according to their nature |
|
|
233 | (1) |
|
10.2.2 Membrane classification according to their structure |
|
|
234 | (1) |
|
10.3 Transport phenomena in membranes |
|
|
234 | (2) |
|
10.3.1 Transport mechanisms in synthetic membranes |
|
|
235 | (1) |
|
10.4 Mechanism of particle transportation through membranes |
|
|
236 | (1) |
|
10.4.1 According to particle size |
|
|
236 | (1) |
|
10.5 Methods of preparation of synthetic membranes |
|
|
237 | (3) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
10.6 Applications of membrane |
|
|
240 | (1) |
|
10.6.1 Controlled drug delivery system through nanochannels |
|
|
240 | (1) |
|
10.7 Transport phenomena in drug delivery membrane systems |
|
|
240 | (2) |
|
10.7.1 Fabrication methods of nanoporous membranes for drug delivery |
|
|
241 | (1) |
|
10.7.2 Long-term and sustained drug delivery |
|
|
242 | (1) |
|
10.7.3 Transport through semipermeable membranes |
|
|
242 | (1) |
|
10.8 Conclusions and future trends |
|
|
242 | (5) |
|
|
243 | (4) |
|
11 Transport phenomena in fixed and fluidized-bed inorganic membrane reactors |
|
|
247 | (34) |
|
|
|
|
|
|
|
247 | (2) |
|
|
249 | (1) |
|
Subscripts and superscripts |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
11.2 Overview of momentum transfer in catalytic reactors |
|
|
250 | (11) |
|
11.2.1 Fixed-bed reactors |
|
|
250 | (3) |
|
11.2.2 Fluidized-bed reactors |
|
|
253 | (2) |
|
|
255 | (6) |
|
11.3 Overview on gas transport in membrane reactors |
|
|
261 | (12) |
|
11.3.1 Mass transfer among phases in fluidized beds |
|
|
261 | (2) |
|
11.3.2 External mass transfer between membrane and fluid bulk in the absence and presence of inhibitors |
|
|
263 | (1) |
|
11.3.3 Peculiar aspects on the effect of hydrogen dissolved in metal membranes |
|
|
264 | (7) |
|
11.3.4 Aspects on mass transport of gases in microporous ceramic membranes |
|
|
271 | (2) |
|
11.4 Heat transfer among phases |
|
|
273 | (3) |
|
11.5 Conclusion and future trends |
|
|
276 | (5) |
|
|
276 | (5) |
|
12 Mass transport through capillary, biocatalytic membrane reactor |
|
|
281 | (28) |
|
|
|
|
281 | (10) |
|
12.1.1 Biocatalytic membrane reactors |
|
|
282 | (4) |
|
12.1.2 Enzyme immobilization |
|
|
286 | (5) |
|
12.2 On mass transport through a biocatalytic membrane layer |
|
|
291 | (1) |
|
|
292 | (3) |
|
12.4 Evaluation of the predicted results |
|
|
295 | (5) |
|
12.4.1 The effect of the lumen radius on the mass transport |
|
|
296 | (1) |
|
12.4.2 The effect of the lumen radius and the membrane thickness |
|
|
297 | (2) |
|
12.4.3 Some results with Michaelis-Menten kinetics |
|
|
299 | (1) |
|
|
300 | (9) |
|
|
301 | (1) |
|
|
301 | (1) |
|
|
301 | (3) |
|
|
304 | (1) |
|
|
305 | (1) |
|
Physical mass transport through cylindrical membrane |
|
|
305 | (1) |
|
|
306 | (3) |
|
13 Transport phenomena in photocatalytic membrane reactors |
|
|
309 | (16) |
|
|
|
|
309 | (1) |
|
|
309 | (1) |
|
|
310 | (1) |
|
|
310 | (1) |
|
13.2 Fundamental aspects of photocatalytic membrane reactors |
|
|
311 | (7) |
|
13.2.1 Main aspects of a photocatalytic process |
|
|
311 | (2) |
|
13.2.2 Reactor configuration and membrane function |
|
|
313 | (2) |
|
13.2.3 Photocatalytic membranes |
|
|
315 | (3) |
|
13.3 Mass transport mechanisms in the main pressure-driven membrane operations involved in photocatalytic membrane reactor |
|
|
318 | (4) |
|
13.4 Conclusion and future trends |
|
|
322 | (3) |
|
|
322 | (3) |
|
14 Transport phenomena in polymeric membrane reactors |
|
|
325 | (16) |
|
|
|
|
|
325 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
14.2 Transport phenomena for the general membrane reactor case |
|
|
327 | (5) |
|
14.2.1 Modeling flow in the membrane reactor |
|
|
327 | (1) |
|
14.2.2 The differential component mole balance |
|
|
328 | (3) |
|
14.2.3 The differential energy balance |
|
|
331 | (1) |
|
14.3 Case study: polymer-based, water---gas shift membrane reactor |
|
|
332 | (6) |
|
14.4 Conclusions and future trends |
|
|
338 | (3) |
|
|
339 | (2) |
|
15 Transport phenomena in polymer electrolyte membrane fuel cells |
|
|
341 | (28) |
|
|
|
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (2) |
|
|
345 | (6) |
|
|
345 | (3) |
|
|
348 | (3) |
|
15.3 Polymer electrolyte membranes |
|
|
351 | (11) |
|
15.3.1 Proton exchange membranes |
|
|
352 | (6) |
|
15.3.2 Anionic exchange membranes |
|
|
358 | (4) |
|
15.4 Conclusion and future trends |
|
|
362 | (7) |
|
|
363 | (6) |
Index |
|
369 | |