Atnaujinkite slapukų nuostatas

El. knyga: Current Trends and Future Developments on (Bio-) Membranes: Transport Phenomena in Membranes

Edited by (Degree in Chemical Eng), Edited by (Chemical Engineering Department, Manchester University, Manchester, UK; Chemical Engineering Department, Urmia University of Technology, Urmia, Iran), Edited by (Senior Researcher, ITM-CNR, University of Calabria, Italy)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Dec-2021
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128232736
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 03-Dec-2021
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128232736
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Transport Phenomena in Membranes illustrates many aspects of mass transport in different membranes used in separation processes, along with their advantages when compared with other types of separation methods. This book focuses on introducing and analyzing transport phenomena in membranes and overviewing achievements in the development of mass transport mechanisms of various membranes. Hence, this book is a key reference text for R&D managers in industry interested in the development of membrane technologies as well as academic researchers and postgraduate students working in the wider area of the strategic treatment, separation and purification processes.

This book is intended to act as a resource for a wide range of people in various separation fields, including students and researchers, consultants and engineers, operators and managers, who have an interest in membrane technology.

  • Describes developments in transport phenomena in different membrane processes
  • Provides a comprehensive reference book in the membrane field for students and engineers
  • Describes membrane separation fundamentals and relates them to various potential applications
List of contributors
xi
Preface xiii
1 Fundamentals of membrane technology
1(24)
Parisa Biniaz
Elham Rahimpour
Angelo Basile
Mohammad Reza Rahimpour
Abbreviations
1(1)
1.1 Introduction
2(1)
1.2 Membrane classification
2(4)
1.2.1 Organic membranes
3(1)
1.2.2 Inorganic membranes
3(1)
1.2.3 Mixed matrix membranes
4(2)
1.3 Membrane technology
6(7)
1.3.1 Pressure-driven membrane technology
7(1)
1.3.2 Concentration-driven membrane technology
8(2)
1.3.3 Electrically driven membrane technology
10(2)
1.3.4 Thermally driven membrane technology
12(1)
1.4 Concentration polarization term
13(1)
1.5 Membrane fouling
14(1)
1.6 New advances in membrane technologies
15(3)
1.6.1 Membrane modification
15(1)
1.6.2 Novel membrane reactors
16(1)
1.6.3 Membrane contactors
17(1)
1.7 Conclusions and future trends
18(7)
References
19(6)
2 Transport phenomena in ultrafiltration/microfiltration membranes
25(24)
Endre Nagy
Imre Hegedus
Abbreviations
25(1)
Nomenclature
25(1)
2.1 Introduction
26(3)
2.2 On membrane material and its preparation
29(5)
2.2.1 Membrane preparation by conventional materials
29(2)
2.2.2 Membrane preparation by nanosized materials
31(2)
2.2.3 Other membrane preparation methods
33(1)
2.3 Theoretical part
34(5)
2.3.1 The mass transport through a flat-sheet membrane
35(4)
2.4 Results and discussions
39(4)
2.4.1 Simultaneous transport through the polarization and membrane layer, across a membrane
39(4)
2.5 Conclusion and future trends
43(6)
Acknowledgment
44(1)
References
44(5)
3 Transport phenomena in reverse osmosis/nanofiltration membranes
49(42)
Serena Bandini
Cristiana Boi
Abbreviations
49(2)
3.1 Introduction
51(5)
3.2 Statistical---mechanical model by Mason and Lonsdale
56(1)
3.3 Water partitioning: the osmotic equilibrium
57(1)
3.4 Reverse osmosis models
57(8)
3.4.1 The solution---diffusion model
59(2)
3.4.2 The three-parameter model
61(2)
3.4.3 Conclusive remarks and recommendations for reverse osmosis models
63(2)
3.5 Nanofiltration modeling: the porous vision of the Donnan-steric-pore-and-dielectric-exclusion model for aqueous solutions
65(8)
3.5.1 Mass transfer across the membrane pores
66(7)
3.6 Application of Donnan-Steric-pore-and-dielectric-exclusion modeling in nanofiltration: case studies
73(10)
3.6.1 Neutral solutes
73(5)
3.6.2 Electrolyte solutions
78(5)
3.7 Conclusions and future trends
83(8)
Appendix: Reformulation of the solution---diffusion model
83(1)
References
84(7)
4 Transport phenomena in electrodialysis/reverse electrodialysis processes
91(20)
R. Zeynali
Kamran Ghasemzadeh
Angelo Rasile
Abbreviations
91(1)
4.1 Introduction
92(1)
4.2 Electrodialysis process
93(6)
4.2.1 Description of process
94(2)
4.2.2 Theory of transport phenomena
96(2)
4.2.3 Literature on electrodialysis process
98(1)
4.3 Overview of reverse electrodialysis process
99(6)
4.3.1 Description of the process
100(1)
4.3.2 Theory of transport phenomena
101(2)
4.3.3 Literature on reverse electrodialysis process
103(2)
4.4 Conclusion and future trends
105(6)
References
106(5)
5 Transport phenomena in membrane distillation processes
111(18)
Jianhua Zhang
Jun-De Li
Zongli Xie
Xiaodong Dai
Stephen Gray
Abbreviations
111(1)
5.1 Introduction
111(2)
5.2 Mass and heat transfers in the membrane distillation process
113(11)
5.2.1 Mass transfer through the membrane
114(4)
5.2.2 Heat transfers through the membrane
118(2)
5.2.3 Temperature polarization
120(1)
5.2.4 Influence of module and membrane configurations on mass and heat transfers
121(3)
5.3 Conclusion and future trends
124(5)
Symbol
124(1)
References
125(4)
6 Transport phenomena in dialysis processes
129(36)
Marco Cocchi
Leone Mazzeo
Vincenzo Piemonte
Abbreviations
129(1)
Nomenclature
129(1)
6.1 Introduction
130(6)
6.1.1 Brief history of dialysis
134(2)
6.2 Background
136(4)
6.2.1 Dialysis
136(1)
6.2.2 Hemodialysis
137(1)
6.2.3 Hemofiltration
138(1)
6.2.4 Hemodiafiltration
139(1)
6.3 Role of semipermeable membrane in artificial kidney
140(4)
6.4 Mathematical models of kidney transport phenomena
144(15)
6.4.1 Dialysis model
145(6)
6.4.2 Patient device models
151(1)
6.4.3 Single-compartment model
152(2)
6.4.4 Multicompartment model
154(2)
6.4.5 Modeling of regenerative dialysis
156(3)
6.5 Conclusion and future trends
159(6)
References
159(6)
7 Transport phenomena in pervaporation
165(28)
Axel Schmidt
Jochen Strube
Nomenclature
165(1)
Greek letters
166(1)
Subscripts
166(1)
7.1 Introduction
167(1)
7.2 Fundamentals
167(3)
7.3 Transport phenomena
170(15)
7.3.1 Pressure drop
170(2)
7.3.2 Mass transfer
172(2)
7.3.3 Solution---diffusion model
174(6)
7.3.4 Concentration polarization
180(2)
7.3.5 Heat transfer
182(2)
7.3.6 Temperature polarization
184(1)
7.4 Application to process simulation as scaleup tool
185(3)
7.5 Conclusions and future trends
188(5)
References
189(4)
8 Transport phenomena in gas membrane separations
193(16)
Foroogh Mohseni Ghaleh Ghazi
Mitra Abbaspour
Mohammad Reza Rahimpour
List of Acronyms
193(1)
Nomenclature
193(1)
8.1 Introduction
194(2)
8.2 Membrane gas separation
196(2)
8.3 Fundamentals equations of membrane transport
198(1)
8.4 Permeation of gases through membranes
199(4)
8.4.1 Gas permeation in porous membranes
200(1)
8.4.2 Gas permeation in nonporous membranes
200(3)
8.5 Strategies to enhance gas permeation in membranes
203(3)
8.5.1 Gas transport models in nanocomposite membrane modules
204(2)
8.6 Conclusions and future trends
206(3)
References
207(2)
9 Transport phenomena in membrane contactor systems
209(22)
Rahim Aghaehrahimian
Parisa Biniaz
Seyed Mohammad Esmaeil Zakeri
Mohammad Reza Rahimpour
Abbreviations
209(1)
Nomenclature
209(1)
9.1 Introduction
210(2)
9.1.1 Advantages and disadvantages of membrane contactors
211(1)
9.1.2 Application of membrane contactors in different operating units
211(1)
9.2 Transport phenomena
212(5)
9.2.1 Transport phenomena in liquid---liquid membrane contactor systems
212(1)
9.2.2 Transport phenomena in gas---liquid membrane contactor systems
213(4)
9.3 Mass transfer in shell-and-tube hollow fiber membrane contactor
217(4)
9.3.1 Mass transport in shell side
218(2)
9.3.2 Mass transport inside the fiber
220(1)
9.3.3 Mass transport in membrane
221(1)
9.4 Membrane wetting and mass transfer resistance
221(1)
9.5 Novel approaches to membrane contactor systems
222(1)
9.6 Conclusions and future trends
223(8)
References
227(4)
10 Transport phenomena in drug delivery membrane systems
231(16)
Sara A.M. El-Sayed
Mosrafa Mahrouk
Abbreviations
231(1)
10.1 Introduction
231(2)
10.1.1 Definition of a membrane
231(2)
10.1.2 Historical background
233(1)
10.2 General classification of membranes
233(1)
10.2.1 Membrane classification according to their nature
233(1)
10.2.2 Membrane classification according to their structure
234(1)
10.3 Transport phenomena in membranes
234(2)
10.3.1 Transport mechanisms in synthetic membranes
235(1)
10.4 Mechanism of particle transportation through membranes
236(1)
10.4.1 According to particle size
236(1)
10.5 Methods of preparation of synthetic membranes
237(3)
10.5.1 Sintering
238(1)
10.5.2 Stretching
238(1)
10.5.3 Track-etching
239(1)
10.5.4 Template leaching
239(1)
10.5.5 Phase inversion
239(1)
10.5.6 Coating
239(1)
10.6 Applications of membrane
240(1)
10.6.1 Controlled drug delivery system through nanochannels
240(1)
10.7 Transport phenomena in drug delivery membrane systems
240(2)
10.7.1 Fabrication methods of nanoporous membranes for drug delivery
241(1)
10.7.2 Long-term and sustained drug delivery
242(1)
10.7.3 Transport through semipermeable membranes
242(1)
10.8 Conclusions and future trends
242(5)
References
243(4)
11 Transport phenomena in fixed and fluidized-bed inorganic membrane reactors
247(34)
Alessio Caravella
Katia Cassano
Stefano Bellini
Virgilio Stellato
Giulia Azzato
Abbreviations
247(2)
Greek symbols
249(1)
Subscripts and superscripts
249(1)
Acronyms
250(1)
11.1 Introduction
250(1)
11.2 Overview of momentum transfer in catalytic reactors
250(11)
11.2.1 Fixed-bed reactors
250(3)
11.2.2 Fluidized-bed reactors
253(2)
11.2.3 Turbulence
255(6)
11.3 Overview on gas transport in membrane reactors
261(12)
11.3.1 Mass transfer among phases in fluidized beds
261(2)
11.3.2 External mass transfer between membrane and fluid bulk in the absence and presence of inhibitors
263(1)
11.3.3 Peculiar aspects on the effect of hydrogen dissolved in metal membranes
264(7)
11.3.4 Aspects on mass transport of gases in microporous ceramic membranes
271(2)
11.4 Heat transfer among phases
273(3)
11.5 Conclusion and future trends
276(5)
References
276(5)
12 Mass transport through capillary, biocatalytic membrane reactor
281(28)
Endre Nagy
Imre Hegedus
12.1 Introduction
281(10)
12.1.1 Biocatalytic membrane reactors
282(4)
12.1.2 Enzyme immobilization
286(5)
12.2 On mass transport through a biocatalytic membrane layer
291(1)
12.3 Theoretical part
292(3)
12.4 Evaluation of the predicted results
295(5)
12.4.1 The effect of the lumen radius on the mass transport
296(1)
12.4.2 The effect of the lumen radius and the membrane thickness
297(2)
12.4.3 Some results with Michaelis-Menten kinetics
299(1)
12.5 Concluding remarks
300(9)
Acknowledgment
301(1)
Notation
301(1)
References
301(3)
Further reading
304(1)
Appendix 12.A
305(1)
Physical mass transport through cylindrical membrane
305(1)
Appendix 12.B
306(3)
13 Transport phenomena in photocatalytic membrane reactors
309(16)
Enrica Fontananova
Valentina Grosso
Abbreviations
309(1)
List of symbols
309(1)
Greek symbols
310(1)
13.1 Introduction
310(1)
13.2 Fundamental aspects of photocatalytic membrane reactors
311(7)
13.2.1 Main aspects of a photocatalytic process
311(2)
13.2.2 Reactor configuration and membrane function
313(2)
13.2.3 Photocatalytic membranes
315(3)
13.3 Mass transport mechanisms in the main pressure-driven membrane operations involved in photocatalytic membrane reactor
318(4)
13.4 Conclusion and future trends
322(3)
References
322(3)
14 Transport phenomena in polymeric membrane reactors
325(16)
Brcnr A. Bishop
Oishi Sanyal
Fernando V. Lima
Abbreviations
325(1)
Nomenclature
325(1)
14.1 Introduction
326(1)
14.2 Transport phenomena for the general membrane reactor case
327(5)
14.2.1 Modeling flow in the membrane reactor
327(1)
14.2.2 The differential component mole balance
328(3)
14.2.3 The differential energy balance
331(1)
14.3 Case study: polymer-based, water---gas shift membrane reactor
332(6)
14.4 Conclusions and future trends
338(3)
References
339(2)
15 Transport phenomena in polymer electrolyte membrane fuel cells
341(28)
Irene Gatto
Alessandra Carbone
Enza Passalacqua
Abbreviations
341(1)
Nomenclature
342(1)
15.1 Introduction
343(2)
15.2 Transport phenomena
345(6)
15.2.1 Water transport
345(3)
15.2.2 Proton conduction
348(3)
15.3 Polymer electrolyte membranes
351(11)
15.3.1 Proton exchange membranes
352(6)
15.3.2 Anionic exchange membranes
358(4)
15.4 Conclusion and future trends
362(7)
References
363(6)
Index 369
Angelo Basile, a Chemical Engineer with a Ph.D. in Technical Physics, was a senior Researcher at the ITM-CNR as a responsible for the research related to both ultra-pure hydrogen production and CO2 capture using Pd-based Membrane Reactors. He is a reviewer for 165 int. journals, an editor/author of more than 50 scientific books and 140 chapters on international books on membrane science and technology; with various patens (7 Italian, 2 European, and 1 worldwide). He is a referee of 1more than 150 international scientific journals and a Member of the Editorial Board of more than 20 of them. Basile is also an associate editor of the: Int. J. Hydrogen Energy; Asia-Pacific Journal of Chemical Eng.; journal Frontiers in Membrane Science and Technology; and co-Editor-in-chief of the Int. J. Membrane Science & Technol.



Kamran Ghasemzadeh is currently working as a senior research associate at the chemical engineering department, University of Manchester, UK since August 2022. At the same time, he has served as an associate professor in the chemical engineering department at Urmia University of Technology, Iran, wherein he developed research on membranes/membrane reactors for many processes.

Kamran Ghasemzadehs h-index = 21, with 126 document results in a total of 1135 citations in the areas: Energy, Chemical Engineering, Environmental Science, and membrane technologies, (www.scopus.com March 30/2023). He has more than 50 papers published in national/international congresses; and is a reviewer for 70 int. journals, an editor/author of more than 10 scientific books, and 45 chapters on int. books on membrane science and technology. Today Ghasemzadeh is collaborating with the Dept. of chem. Eng. at the University of Manchester (UK) on the valorisation of biomass by-products. He participated in various national and international projects on membrane reactors and membrane science. In the last years, he was the supervisor/co-supervisor of more than 38 Thesis for Master and Ph.D. students. Ghasemzadeh served as Director of the UUT research center during the period Sep. 2018 April 2022.

Adolfo Iulianelli, Degree in Chemical Engineering in 2002 at University of Calabria (Italy), obtained his PhD Degree in Chemical and Materials Engineering in 2006 at University of Calabria (Italy). Nowadays, he is working at the Institute on Membrane Technology of the National Research Council of Italy (CNR-ITM). He is author or co-author of more than 50 international articles (ISI), 1 patent, more than 50 contributes as oral and poster presentations in national and international conferences, more than 20 book chapters. Furthermore, he is Reviewer of more than 20 international ICI journals, Invited Speaker in more than 5 international conferences, training school, etc. Subject Editor of the Scientific World Journal, Guest Editor for the International Journal of Hydrogen Energy (ICI) and Journal of Membrane Science and Technology and Associate Editor of International Journal of Membrane Science and Technology. His research interests are membrane reactors, fuel cells, gas separation, hydrogen production from reforming reactions of renewable sources through inorganic membrane reactors and membrane operations. His h-index is 22 (source: www.scoupus.com).