Atnaujinkite slapukų nuostatas

El. knyga: Curvature of Space and Time, with an Introduction to Geometric Analysis

  • Formatas: 243 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jan-2021
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470463137
Kitos knygos pagal šią temą:
  • Formatas: 243 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jan-2021
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470463137
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College. This book is published in cooperation with IAS/Park City Mathematics Institute.
IAS/Park City Mathematics Institute vii
Preface ix
Chapter 1 Introduction to Riemannian geometry
1(44)
§1.1 Riemann's Habilitation lecture in examples
1(15)
§1.2 The framework of Riemannian geometry
16(13)
§1.3 Geodesies
29(16)
Chapter 2 Differential calculus with tensors
45(44)
§2.1 Introduction to differential calculus
45(15)
§2.2 Tensors
60(16)
§2.3 Differentiation of tensors
76(13)
Chapter 3 Curvature
89(34)
§3.1 Intuiting curvature via Jacobi equation
89(15)
§3.2 Ricci and scalar curvature
104(19)
Chapter 4 General relativity
123(76)
§4.1 The framework of special relativity
123(21)
§4.2 Gravity and general relativity
144(18)
§4.3 Geometry of Schwarzschild space-time
162(16)
§4.4 Kruskal-Szekeres extension of Schwarzschild space-time
178(21)
Chapter 5 Introduction to geometric analysis
199(40)
§5.1 The (relativistic) Poisson problem
199(19)
§5.2 On the concept of mass
218(21)
Bibliography 239(2)
Index 241