Atnaujinkite slapukų nuostatas

El. knyga: Cyclic Cohomology at 40: Achievements and Future Prospects

Edited by , Edited by , Edited by , Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27-October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada.

Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory.



The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher categorical algebra, Hopf algebra symmetries, de Rham-Witt complex, quantum physics, etc., in which cyclic homology plays the role of a unifying theme.

The researcher will find frontier research articles in which the cyclic theory provides a computational tool of great relevance. In particular, in analysis cyclic cohomology index formulas capture the higher invariants of manifolds, where the group symmetries are extended to Hopf algebra actions, and where Lie algebra cohomology is greatly extended to the cyclic cohomology of Hopf algebras which becomes the natural receptacle for characteristic classes. In algebraic topology the cyclotomic structure obtained using the cyclic subgroups of the circle action on topological Hochschild homology gives rise to remarkably significant arithmetic structures intimately related to crystalline cohomology through the de Rham-Witt complex, Fontaine's theory and the Fargues-Fontaine curve.
A. Baldare, M. Benameur, and V. Nistor, Chern-Connes-Karoubi character
isomorphisms and algebras of symbols of pseudodifferential operators
J. Block, N. Higson, and J. Sanchez Jr., On Perrot's index cocycles
P. Carrillo Rouse, The Chern-Baum Connes assembly map for Lie groupoids
A. Connes and C. Consani, Hochschild homology, trace map and $\zeta$-cycles
A. Connes and C. Consani, Cyclic theory and the pericyclic category
J. Cuntz, The image of Bott peridocity in cyclic homology
B. I. Dundas, Applications of topological cyclic homology to algebraic
$K$-theory
D. Gepner, Algebraic $K$-theory and generalized stable homotopy theory
A. Gorokhovsky and E. van Erp, Cyclic cohomology and the extended Heisenberg
calculus of Epstein and Melrose
L. Hesselholt, Topological cyclic homology and the Fargues-Fontaine curve
M. Khalkhali and I. Shapiro, Hopf cyclic cohomology and beyond
M. Lorentz, The Hochschild cohomology of uniform Roe algebras
E. McDonald, F. Sukochev, and X. Xiong, Quantum differntiability-The
analytical perspective
R. Meyer and D. Mukherjee, Local cyclic homology for nonarchimedean Banach
algebras
H. Moscovici, On the van Est analogy in Hopf cyclic cohomology
P. Piazza and X. Tang, Primary and secondary invariants of Dirac operators on
$G$-proper manifolds
M. J. Pflaum, Localization in Hochschild homology
R. Ponge, Cyclic homology and group actions
E. Prodan, Cyclic cocycles and quantized pairings in materials science
M. Puschnigg, Periodic cyclic homology of crossed products
A. Savin and E. Schrohe, Trace expansions and equivariant traces on an
algebra of Fourier integral operators on $\mathbb{R}^n$
Y. Song and X. Tang, Carton motion group and orbital integrals
B. Tsygan, On noncommutative crystalline cohomology
T. D. H. Van Nuland and W. D. van Suijlekom, Cyclic cocycles and one-loop
corrections in the spectral action
J. Wang, Z. Xie, and G. Yu, $\ell^1$-higher index, $\ell^1$-higher rho
invariant and cyclic cohomology.
A. Connes, College de France, Paris, France, and Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France.

C. Consani, Johns Hopkins University, Baltimore, MD.

B. I. Dundas, University of Bergen, Norway.

M. Khalkhali, Western University, London, ON, Canada.

H. Moscovici, The Ohio State University, Columbus, OH.