Atnaujinkite slapukų nuostatas

Data Mining for Design and Marketing [Minkštas viršelis]

Edited by (University of Tokyo, School of Engineering, Japan), Edited by (Kansai University, Osaka, Japan)
  • Formatas: Paperback / softback, 336 pages, aukštis x plotis: 234x156 mm, weight: 2760 g, 43 Tables, black and white; 114 Illustrations, black and white
  • Serija: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
  • Išleidimo metai: 07-Jun-2017
  • Leidėjas: CRC Press
  • ISBN-10: 1138113476
  • ISBN-13: 9781138113473
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 336 pages, aukštis x plotis: 234x156 mm, weight: 2760 g, 43 Tables, black and white; 114 Illustrations, black and white
  • Serija: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
  • Išleidimo metai: 07-Jun-2017
  • Leidėjas: CRC Press
  • ISBN-10: 1138113476
  • ISBN-13: 9781138113473
Kitos knygos pagal šią temą:

Data Mining for Design and Marketing shows how to design and integrate data mining tools into human thinking processes in order to make better business decisions, especially in designing and marketing products and systems.

The expert contributors discuss how data mining can identify valuable consumer patterns, which aid marketers and designers in detecting consumers’ needs. They also explore visualization tools based on the computational methods of data mining. Discourse analysis, chance discovery, knowledge discovery, formal concept analysis, and an adjacency matrix are just some of the novel approaches covered. The book explains how these methods can be applied to website design, the retrieval of scientific articles from a database, personalized e-commerce support tools, and more.

Through the techniques of data mining, this book demonstrates how to effectively design business processes and develop competitive products and services. By embracing data mining tools, businesses can better understand the behavior and needs of their customers.

Chapter 1 Sensing Values in Designing Products and Markets on Data Mining and Visualizations
1(18)
Yukio Ohsawa
Chapter 2 Reframing the Data-Mining Process
19(16)
David Bergner
Ozgur Eris
Chapter 3 The Use of Online Market Analysis Systems to Achieve Competitive Advantage
35(22)
Lihua Zhao
Mark D. Uncles
Gary Gregory
Chapter 4 Finding Hierarchical Patterns in Large POS Data Using Historical Trees
57(24)
Takanobu Nakahara
Hiroyuki Morita
Chapter 5 A Method to Search ARX Model Orders and Its Application to Sales Dynamics Analysis
81(14)
Kenta Fukata
Takashi Washio
Katsutoshi Yada
Hiroshi Motoda
Chapter 6 Data Mining for Improved Web Site Design and Enhanced Marketing
95(12)
Asem Omari
Chapter 7 Discourse Analysis and Creativity Support for Concept Product Design
107(12)
Noriko Imafuji Yasui
Xavier Llora
David E. Goldberg
Chapter 8 Data Crystallization with Human Interactions Applied for Designing New Products
119(18)
Kenichi Horie
Yoshiharu Maeno
Yukio Ohsawa
Chapter 9 Improving and Applying Chance Discovery for Design Analysis
137(12)
Brett Bojduj
Chapter 10 Mining for Influence Leaders in Global Teamwork Projects
149(22)
Renate Fruchter
Shubashri Swaminathan
Naohiro Matsumura
Yukio Ohsawa
Chapter 11 Analysis Framework for Knowledge Discovery Related to Persuasion Process Conversation Logs
171(16)
Wataru Sunayama
Katsutoshi Yada
Chapter 12 Association Bundle-Based Market Basket Analysis
187(24)
Wenxue Huang
Milorad Krneta
Limin Lin
Jianhong Wu
Chapter 13 Formal Concept Analysis with Attribute Priorities
211(12)
Radim Belohlavek
Vilem Vychodil
Chapter 14 Literature Categorization System for Automated Database Retrieval of Scientific Articles Based on Dedicated Taxonomy
223(12)
Lukas Pichl
Manabu Suzuki
Masaki Murata
Daiji Kato
Izumi Murakami
Akira Sasaki
Chapter 15 A Data-Mining Framework for Designing Personalized E-Commerce Support Tools
235(16)
Timothy Maciag
Dominik Slezak
Daryl H. Hepting
Robert J. Hilderman
Chapter 16 An Adjacency Matrix Approach for Extracting User Sentiments
251(26)
Bin Shi
Kuiyu Chang
Chapter 17 Visualizing RFID Tag Data in a Library for Detecting Latent Interest of Users
277(18)
Yukio Ohsawa
Takuma Hosoda
Takeshi Ui
Appendix A KeyGraph and Pictorial KeyGraph 295(4)
Appendix B A Maximal Cliques Enumeration Algorithm for MBA Transaction Data 299(8)
Index 307
Yukio Ohsawa, Katsutoshi Yada