Atnaujinkite slapukų nuostatas

El. knyga: Data Science for Complex Systems

(BML Munjal University, India), (University of Sydney), (Indian Institute of Management Ahmedabad)
  • Formatas: PDF+DRM
  • Išleidimo metai: 25-May-2023
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108957212
  • Formatas: PDF+DRM
  • Išleidimo metai: 25-May-2023
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108957212

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Many real-life systems are dynamic, evolving, and intertwined. Examples of such systems displaying 'complexity', can be found in a wide variety of contexts ranging from economics to biology, to the environmental and physical sciences. The study of complex systems involves analysis and interpretation of vast quantities of data, which necessitates the application of many classical and modern tools and techniques from statistics, network science, machine learning, and agent-based modelling. Drawing from the latest research, this self-contained and pedagogical text describes some of the most important and widely used methods, emphasising both empirical and theoretical approaches. More broadly, this book provides an accessible guide to a data-driven toolkit for scientists, engineers, and social scientists who require effective analysis of large quantities of data, whether that be related to social networks, financial markets, economies or other types of complex systems.

This book provides an accessible guide to the tools and techniques of data science that can be utilised for the analysis of complex systems. This text is an invaluable resource for scientists, engineers and social scientists who require effective analysis of large quantities of data.

Recenzijos

'Complex systems are a subject of popular interest thanks to the efforts of both academics and industry researchers during the last few years, and the 2021 Nobel Prize in Physics. This book is timely and it gives a comprehensive view of complex systems with an emphasis on data-driven contributions, ranging from economic and financial aspects to broader social science applications. Reading this book is a pleasure, and it provides a solid and robust understanding of the key topics in the field. This is a 'must -read for anybody interested in complex systems' and I strongly recommend having it on your shelf!' Tiziana Di Matteo, King's College London, Complexity Science Hub Vienna, and Enrico Fermi Research Centre (CREF)

Daugiau informacijos

This book provides a guide to the analysis of complex systems through the lens of data science.
Preface; Part I. Introduction:
1. Facets of complex systems; Part II. Heterogeneity and Dependence:
2. Quantifying heterogeneity: Classical and Bayesian statistics;
3. Statistical analyses of time-varying phenomena; Part III. Patterns and Interlinkages:
4. Pattern recognition in complex systems: machine learning;
5. Interlinkages and heterogeneity: network theory. Part IV. Emergence: from Micros to Macro:
6. Interaction and emergence: agent-based models;
7. Epilogue; References; Index.
Anindya S. Chakrabarti is an Associate Professor of Economics and UTI Chair of Macroeconomics at the Indian Institute of Management Ahmedabad. His main research interests are macroeconomics, big data in economics, time series econometrics, network theory and complex systems. K. Shuvo Bakar is Senior Lecturer at the University of Sydney. His research interests are Bayesian modelling and computation to reduce uncertainty in inferential statements. He works on statistical machine learning methods and applications to real-life data-driven problems. Anirban Chakraborti is Dean of Research at the School of Engineering and Technology at BML Munjal University, India. His main research interests lie in the areas of econophysics, data science, quantum physics and nanomaterial science.