Atnaujinkite slapukų nuostatas

El. knyga: Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Changsha, China, September 22-24, 2017, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This two volume set (CCIS 727 and 728) constitutes the refereed proceedings of the Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017 (originally ICYCSEE) held in Changsha, China, in September 2017.

The 112 revised full papers presented in these two volumes were carefully reviewed and selected from 987 submissions. The papers cover a wide range of topics related to Basic Theory and Techniques for Data Science including Mathematical Issues in Data Science, Computational Theory for Data Science, Big Data Management and Applications, Data Quality and Data Preparation, Evaluation and Measurement in Data Science, Data Visualization, Big Data Mining and Knowledge Management, Infrastructure for Data Science, Machine Learning for Data Science, Data Security and Privacy, Applications of Data Science, Case Study of Data Science, Multimedia Data Management and Analysis, Data-driven Scientific Research, Data-driven Bioinformatics, D

ata-driven Healthcare, Data-driven Management, Data-driven eGovernment, Data-driven Smart City/Planet, Data Marketing and Economics, Social Media and Recommendation Systems, Data-driven Security, Data-driven Business Model Innovation, Social and/or organizational impacts of Data Science.

Mathematical Issues in Data Science.-  Computational Theory for Data
Science, Big Data Management and Applications.- Data Quality and Data
Preparation.- Evaluation and Measurement in Data Science.- Data
Visualization.- Big Data Mining and Knowledge Management.- Infrastructure for
Data Science.- Machine Learning for Data Science.- Data Security and
Privacy.- Applications of Data Science.- Case Study of Data Science.-
Multimedia Data Management and Analysis.- Data-driven Scientific Research.-
Data-driven Bioinformatics.- Data-driven Healthcare.- Data-driven
Management.- Data-driven eGovernment.- Data-driven Smart City/Planet.- Data
Marketing and Economics.- Social Media and Recommendation Systems.-
Data-driven Security.- Data-driven Business Model Innovation.- Social and/or
organizational impacts of Data Science.