Atnaujinkite slapukų nuostatas

El. knyga: Datacenter Connectivity Technologies: Principles and Practice

Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In recent years, investments by cloud companies in mega data centers and associated network infrastructure has created a very active and dynamic segment in the optical components and modules market. Optical interconnect technologies at high speed play a critical role for the growth of mega data centers, which flood the networks with unprecedented amounts of data traffic.

Datacenter Connectivity Technologies: Principles and Practice provides a comprehensive and in-depth look at the development of various optical connectivity technologies which are making an impact on the building of data centers. The technologies span from short range connectivity, as low as 100 meters with multi-mode fiber (MMF) links inside data centers, to long distances of hundreds of kilometers with single-mode fiber (SMF) links between data centers.

This book is the first of its kind to address various advanced technologies connecting data centers. It represents a collection of achievements and the latest developments from well-known industry experts and academic researchers active in this field.

Technical topics covered in this book include:

- Mega data center requirements
- High volume VCSELs
- Directly modulated lasers
- Electro-absorption modulated lasers
- Pulse amplitude modulation (PAM)
- Discrete Multi-Tone modulation (DMT)
- Optical Duobinary Transmission
- Optical fibers and connectors
- Mach-zenhder modulators
- Silicon photonics
- Optical waveguide devices and packaging
- Testing and measurements
- Advanced modulation formats
- Optical coherent networks
- High-speed IC design & packaging
Preface xvii
Acknowledgements xxi
List of Contributors xxiii
List of Figures xxvii
List of Tables lxi
List of Abbreviations lxv
1 Optical Interconnect Technologies for Datacenter Networks 1(32)
Chongjin Xie
1.1 Introduction
1(3)
1.2 Intra-datacenter Interconnects
4(13)
1.2.1 40G Optical Interconnect Technologies
8(3)
1.2.2 100G Optical Interconnect Technologies
11(3)
1.2.3 400G and Beyond Optical Interconnect Technologies
14(3)
1.3 Inter-datacenter Interconnects
17(9)
1.3.1 Inter-datacenter Interconnects in Metro Networks
21(2)
1.3.2 Inter-datacenter Interconnects in WANs
23(3)
1.4 Summary
26(1)
References
26(7)
2 Vertical Cavity Surface Emitting Lasers 33(54)
Wenbin Jiang
2.1 Introduction
33(1)
2.2 Technology Fundamentals
33(5)
2.3 VCSEL Device Structure
38(19)
2.4 VCSEL Material Growth
57(8)
2.5 VCSEL Fabrication Process
65(7)
2.6 Conclusion
72(1)
References
73(14)
3 Direct Modulation Laser Technology: Past, Present, and Future 87(86)
Yasuhiro Matsui
3.1 Introduction
87(4)
3.2 Intuitive Picture of the Dynamics of Directly Modulated Lasers
91(6)
3.3 Progress of High-Speed FP and DFB Lasers
97(7)
3.3.1 1.55 μm DML
97(4)
3.3.2 1.3 μm DML
101(2)
3.3.3 Short-Wavelength DML
103(1)
3.4 Reach Extension of DML for PON and Metro Applications
104(17)
3.4.1 Principle of Reach Extension of DML by Tailoring Chirp
104(4)
3.4.2 10 Git/s Transmission Performance of Adiabatic-and Transient-Chirp Dominant DMLs
108(2)
3.4.3 Gain Compression Phenomena
110(4)
3.4.4 Experimental S21 Response and Transmission Performance of a Highly-Damped DBR Laser
114(2)
3.4.5 Thermal Wavelength Drift Stabilization for the Burst-Mode NGPON2 Application
116(5)
3.5 Chirp Managed Laser (CML)
121(17)
3.5.1 Principles of CML
122(9)
3.5.2 Experimental Demonstrations of CML
131(7)
3.6 New Era of High-Speed DML Toward 100-GHz Bandwidth
138(19)
3.6.1 Detuned-Loading Effect
139(6)
3.6.2 S21 High-Pass Filter Effect Due to In-Cavity FM-AM Conversion by the DBR Mirror
145(4)
3.6.3 Photon-Photon Resonance Effect
149(3)
3.6.4 Co-Existence of Photon-Photon Resonance and Detuned-Loading Effects
152(2)
3.6.5 55-GHz Bandwidth Short-Cavity DR Laser and 56 Gbaud PAM4 Generation
154(3)
3.7 Conclusions
157(1)
References
158(15)
4 PAM4 Modulation Using Electro-absorption Modulated Lasers 173(40)
Trevor Chan
Winston Way
4.1 Introduction
173(2)
4.2 General PAM4 Optical Transceiver and Link Considerations
175(8)
4.2.1 PAM4 Signal and Optical Link Characteristics
175(3)
4.2.2 EML Biasing and Nonlinear Equalization
178(1)
4.2.3 Forward Error Correction (FEC) and Data Rates for PAM4 Links
179(1)
4.2.4 Sampling Rate and Analog Bandwidth
180(2)
4.2.5 FFE and DFE Equalization
182(1)
4.3 28 Gbaud PAM4 Transmission
183(2)
4.4 56 Gbaud PAM4 Transmission over 2 km Experiment
185(4)
4.5 40 km PAM4 Transmission
189(5)
4.5.1 Avalanche Photodiode (APD)
189(1)
4.5.2 Gain Clamped Semiconductor Optical Amplifier (GC-SOA)
189(5)
4.6 100 km PAM4 Transmission
194(3)
4.6.1 Experimental Setup
194(1)
4.6.2 Single Channel Characteristics
195(1)
4.6.3 Effect of Fiber Nonlinearities
195(2)
4.7 Multipath Interference
197(10)
4.7.1 Experimental Demonstration of the Upper Bound MPI Scenario
199(2)
4.7.2 Time-Domain Mixing Monte Carlo Simulation
201(2)
4.7.3 MPI Experiment with Multiple Connectors
203(4)
4.8 Summary
207(1)
References
208(5)
5 Optical Fiber for Datacenter Connectivity 213(66)
Yi Sun
John Kamino
5.1 Introduction
213(5)
5.2 Fiber Type for Datacenters
218(6)
5.2.1 Multimode Fiber Types for Datacenters
218(2)
5.2.2 Single-mode Fiber Types for Datacenters
220(1)
5.2.3 Optical Cabling for Datacenters
221(2)
5.2.4 Multicore (MCF) and Few-Mode Fiber (FMF) for SDM
223(1)
5.3 Waveguide Design, Modal Structure, and Time Response of SMF and MMF for Datacenters
224(11)
5.3.1 Fundamentals of Waveguide Design and Mode Structures of SMF and MMF
224(4)
5.3.2 Fundamentals of the Time Response of Optical Fiber
228(7)
5.4 Multimode Optical Fiber for High-Speed Short-Reach Interconnect
235(12)
5.4.1 Laser-optimized MMF (OM3 and OM4)
235(7)
5.4.1.1 What is Laser-optimized MMF?
235(1)
5.4.1.2 Differential Modal Delay (DMD)
236(2)
5.4.1.3 Bandwidth of MMF Links
238(4)
5.4.2 Bend-optimized OM3/OM4 and Overfilled Effective Modal Bandwidth
242(2)
5.4.3 Wideband MMF (OM5)
244(3)
5.5 High-Speed VCSEL-MMF Short-Reach Optical Interconnect System
247(16)
5.5.1 System Evaluation Methodology
248(3)
5.5.2 High-Speed VCSEL-MMF System Transmission Validation
251(30)
5.5.2.1 10GBASE-SR transmission over OM3 and OM4 MMF
251(2)
5.5.2.2 40GBASE-eSR4 and 100G eSR4 extended reach demonstration over OM4 MMF
253(3)
5.5.2.3 40/100 Gbps SWDM over OM5 MMF
256(4)
5.5.2.4 High-Speed PAM4 SWDM transmission over OM5 MMF
260(3)
5.6 Datacom Transmission over Single-Mode Optical Fiber
263(5)
5.7 Conclusions
268(2)
References
270(9)
6 PAM4 Signaling and its Applications 279(48)
Frank Chang
6.1 Introduction
279(1)
6.2 A Brief History
280(1)
6.3 PAM4 IC Implementation Challenges
281(6)
6.3.1 PAM4 Transmit Architectures
282(2)
6.3.2 PAM4 Receive Architectures
284(3)
6.4 PAM4 SMF Performance
287(6)
6.4.1 Experimental Setups
287(2)
6.4.2 1λ 40G 10 km Transmission
289(1)
6.4.3 2λ 100G 10 km and 40 km Transmissions
290(1)
6.4.4 Technical Options for 200/400G Over SMF
291(2)
6.5 PAM4 MMF Performance
293(6)
6.5.1 Experimental Setups
294(1)
6.5.2 1λ 40G Transmission Over 550m OM4
295(1)
6.5.3 2λ 100/200 Gbps 300 m Transmission
296(1)
6.5.4 Technical Options for 200/400G Over VCSEL/MMF
297(2)
6.6 PAM4 for OSNR-limited Systems at 1550 nm
299(3)
6.6.1 Experimental Setups
299(1)
6.6.2 OSNR and Dispersion Performance
300(2)
6.7 PAM4 Compliance Tests
302(10)
6.7.1 Transmitter Dispersion Eye Closure for PAM4 (TDECQ)
306(4)
6.7.2 Optical Stressed Receiver Sensitivity
310(2)
6.8 Single Lambda PAM4
312(7)
6.9 Summary and Outlook
319(2)
References
321(6)
7 Discrete Multitone for Metro Datacenter Interconnect 327(30)
Gordon Ning Liu
Tianjian Zuo
Liang Zhang
7.1 Introduction
327(1)
7.2 A Brief History of DMT
328(1)
7.3 How DMT Works
329(9)
7.3.1 FFT/IFFT
330(1)
7.3.2 Cyclic Prefix
331(2)
7.3.3 Loading Algorithm
333(1)
7.3.4 PAPR Suppression
334(2)
7.3.5 Synchronization
336(1)
7.3.6 Channel Equalization
337(1)
7.4 Advanced DMT Techniques for Metro DCI
338(11)
7.4.1 The Principle of CD-induced Power Fading
339(1)
7.4.2 Generations of SSB-DMT
340(4)
7.4.2.1 Optical filter-based SSB-DMT
340(2)
7.4.2.2 E/O modulator-based SSB-DMT
342(2)
7.4.3 Generation of EDC-DSB-DMT
344(1)
7.4.4 Generation of Twin-SSB-DMT
345(2)
7.4.5 Generation of SSBI-free Twin-SSB-DMT
347(2)
7.5 Summary
349(1)
References
350(7)
8 A Duobinary Approach Toward High-speed Short-reach Optical Interconnects 357(20)
Xin Yin
Guy Torfs
Johan Bauwelinck
8.1 Introduction
357(1)
8.2 Three-Level Electrical Duobinary Modulation
358(5)
8.2.1 Nyquist Frequency
359(1)
8.2.2 Power Spectral Density
360(1)
8.2.3 Vertical and Horizontal Eye Openings
361(2)
8.3 100-Gbps EDB/NRZ Transmitter and Receiver Chipset
363(2)
8.4 EDB/NRZ Transmission with DFB-TWEAM
365(4)
8.5 NRZ-OOK Transmission with GeSi EAM
369(2)
8.6 SM LW-VCSEL EDB Links
371(1)
8.7 Conclusion
372(1)
References
372(5)
9 LiNbO3 Mach-Zehnder Modulator 377(28)
Hirochika Nakajima
Yuya Yamaguchi
9.1 Introduction
377(1)
9.2 Physical Properties of LN (LiNbO3) Crystal
377(4)
9.3 Low-loss Ti-diffused Waveguides on LN Since 1974
381(1)
9.4 Mach-Zehnder (MZ) Guided-wave Circuit with Y-branches on LN
382(5)
9.5 Velocity Matching Between Lightwave and Electric Signal
387(3)
9.6 Stabilization of LN-MZM Operation
390(2)
9.7 External Modulation by LN-MZM Accompanied with EDFA Repeating
392(1)
9.8 Vector Modulation with LN-MZM for Digital Coherent Optical Communications
393(3)
9.9 Current Status of LN-MZM and Future Potential
396(4)
9.10 Summary
400(1)
References
401(4)
10 Silicon Photonics Based PAM4, DWDM Datacenter Interconnects 405(26)
Radhakrishnan Nagarajan
Mark Filer
10.1 Introduction
405(4)
10.2 Datacenter Interconnect-Edge
409(3)
10.3 Switch Pluggable 100Gbit/s DWDM Module
412(1)
10.4 PAM4 DSP ASIC
413(2)
10.5 Silicon Photonics
415(2)
10.6 Module and Transmission Performance
417(7)
10.7 Live Datacenter Deployments
424(2)
10.8 Evolution to Switch Pluggable 400-Gbit/s DWDM Module
426(1)
10.9 Conclusion
427(1)
References
428(3)
11 Low-Loss Photonic Integration: Applications in Datacenters 431(50)
Demis D. John
Grant Brodnik
Sarat Gundavarapu
Renan L. Moreira
Michael Belt
Taran Huffman
Daniel J. Blumenthal
11.1 Datacenters and Photonic Integrated Circuits
431(1)
11.2 InP, Si, and Si3N4 Waveguide Platforms
432(2)
11.3 The Ultra-Low Loss Si3N4/SiO2 Platform
434(1)
11.4 Integration Building Blocks on the ULL Silicon Nitride Platform
435(4)
11.4.1 Available PIC Platforms
437(2)
11.5 Ultra-Low Loss PIC Components for Datacom
439(26)
11.5.1 Low-Loss PICs and Optical Delays
439(2)
11.5.2 Integrated Dispersion Compensation
441(9)
11.5.2.1 Design of an Integrated Dispersion Compensator
442(4)
11.5.2.2 Demonstration of 40 Gbps NRZ-OOK Dispersion Compensation
446(1)
11.5.2.3 Demonstration of 40 Gbps PAM-4 Dispersion Compensation
447(3)
11.5.3 Grating Filters
450(3)
11.5.4 Ring Resonator Filters
453(2)
11.5.5 High-Extinction Filters
455(3)
11.5.6 C-band Lasers on the Si3N4 Platform
458(7)
11.6 Silicon-Nitride Waveguide Design
465(5)
11.7 Summary
470(1)
References
471(10)
12 Advanced Optical Measurements for Data Centers 481(68)
Steve Yao
Wajih Daab
Gang He
Daniel Gariepy
12.1 Introduction
481(1)
12.2 Polarization Related Tests
482(27)
12.2.1 Polarization Mode Dispersion (PMD) Measurement
489(5)
12.2.2 Polarization Dependent Loss (PDL) Measurement
494(4)
12.2.3 PDR Measurement of Receivers
498(2)
12.2.4 PDL Measurement of Fiber Optic Link
500(2)
12.2.5 Measuring In-band OSNR by DOP Measurement
502(2)
12.2.6 Polarization Emulation for Non-coherent and Coherent Systems
504(5)
12.3 Optical Signal-to-Noise Ratio Measurement
509(16)
12.3.1 Measuring OSNR with an OSA
510(15)
12.4 Characterization of Optical Vector-Modulated Signals
525(18)
12.4.1 Constellation and IQ Diagrams for Vector-Modulated Signal
526(2)
12.4.2 Definitions of EVM, RMS-EVM and TR-EVM
528(5)
12.4.3 Relationships between EVMRMS, Q-Factor, OSNR and BER
533(3)
12.4.4 Characterization of Transmitter Impairments
536(7)
12.5 Conclusion
543(1)
References
543(6)
13 Digital Signal Processing for Short-reach Optical Communications 549(36)
Kangping Zhong
Xian Zhou
Jiahao Huo
Alan Pak Tao Lau
Chao Lu
Li Zeng
13.1 Introduction
549(3)
13.1.1 Challenges for Short-reach Optical Systems
550(1)
13.1.1.1 Cost
550(1)
13.1.1.2 Form factor
551(1)
13.1.1.3 Latency
551(1)
13.1.2 Different Types of Short-reach Systems
551(1)
13.1.2.1 Server-to-server or Intra-data-center links
551(1)
13.1.2.2 Inter data-center links
551(1)
13.1.2.3 Extended Reach Inter-data-center, Access, and Metro Links
552(1)
13.2 Modulation Formats for Short-reach Systems
552(12)
13.2.1 Pulse Amplitude Modulation (PAM)
553(2)
13.2.2 Carry-less Amplitude and Phase (CAP) Modulation
555(1)
13.2.3 Discrete Multi-tone (DMT) Modulation
556(2)
13.2.4 Performance Comparison of Modulation Formats
558(3)
13.2.5 Complexity Comparison of Modulation Formats
561(2)
13.2.6 Recent Experiment on High-Speed Short-reach Transmission Systems
563(1)
13.3 Digital Signal Processing for Short-reach Systems
564(6)
13.3.1 Feed-forward Equalizer (FFE)
564(2)
13.3.2 Decision Feedback Equalizer (DFE)
566(1)
13.3.3 Direct Detection Faster-than Nyquist (DD-FTN)
567(2)
13.3.4 Volterra-series Based Nonlinear Equalizer (VNLE)
569(1)
13.4 Polarization Division Multiplexed Transmission for Short-reach Systems
570(8)
13.4.1 Stokes-vector Direct Detection (SV-DD) Receiver
571(2)
13.4.2 2-Dimensional (2D) PDM-DD System Based on SV-DD Receiver
573(4)
13.4.3 3-Dimensional (3D) PDM-DD System Based on SV-DD Receiver
577(1)
13.5 Conclusion
578(1)
References
579(6)
14 Multi-dimensional Polarization Modulation 585(36)
Di Che
An Li
Xi Chen
Qian Hu
William Shieh
14.1 Optical Detection with Polarization Diversity
586(8)
14.1.1 The Need of Polarization-Diversity Detection
586(4)
14.1.2 Automatic Polarization Control
590(1)
14.1.3 Polarization-Diversity Detection in Jones Space
591(1)
14.1.4 The Barrier of Self-Polarization Diversity
591(2)
14.1.5 Polarization-Diversity Detection in Stokes Space
593(1)
14.2 Direct Modulation with Coherent Receiver
594(7)
14.2.1 The Intensity-only POL-MUX-DM Coherent System
595(1)
14.2.2 Complex DM Model
596(2)
14.2.3 100-Gb/s CDM Transmission Over 1600-km SMF
598(3)
14.3 Polarization Modulation in Stokes Space
601(7)
14.3.1 Stokes-space Modulation
601(2)
14.3.2 Universal MIMO Equalization in Stokes Space
603(2)
14.3.3 Self-coherent SSM
605(2)
14.3.4 Multi-Dimensional IM in Stokes Space
607(1)
14.4 Noncoherent Polarization Multiplexing
608(5)
14.4.1 Degree of Coherence in POL-MUX Transmitter
608(1)
14.4.2 Noncoherent POL-MUX Schemes
609(4)
14.5 Summary
613(1)
References
613(8)
15 High-speed Flexible Coherent Optical Transport Network 621(38)
Tiejun J. Xia
Glenn A. Wellbrock
15.1 Introduction
621(5)
15.2 Why Optical Coherent Transmission?
626(6)
15.3 Optical Transport Network with Coherent Transmission
632(4)
15.4 What's Next for Optical Transport Network?
636(3)
15.5 Coherent Transport Technology Development by Network Operators
639(5)
15.6 Datacenter Connections and Coherent Transport Networks
644(3)
15.7 Conclusions
647(1)
References
647(12)
16 Ultra-low-power SiGe Driver-IC for High-speed Electro-absorption Modulated DFB Lasers 659(22)
Jung Han Choi
16.1 Introduction
659(1)
16.2 IC Design for Low Power Consumption
660(10)
16.2.1 Design Requirements
660(1)
16.2.2 IC Architectures for Low Power Consumption
661(5)
16.2.3 Driver-IC Design
666(4)
16.2.3.1 Unit-cell design
666(2)
16.2.3.2 Circuit Simulations
668(2)
16.3 Co-design and Electro-optical Simulation
670(3)
16.3.1 Low-power CoC Design
670(2)
16.3.2 Co-simulation of Driver-IC with EML
672(1)
16.3.2.1 Electrical Time-domain Simulations
672(1)
16.3.2.2 Electro-optical Time-domain Simulations
672(1)
16.4 Measurements
673(6)
16.4.1 EO Measurements
673(2)
16.4.2 Transmission Experiments
675(4)
16.5 Conclusion and Perspective
679(1)
References
680(1)
Index 681(4)
About the Editor 685
Frank Chang