Atnaujinkite slapukų nuostatas

El. knyga: Decentralized Estimation and Control for Multisensor Systems

  • Formatas: 256 pages
  • Išleidimo metai: 20-May-2019
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351456500
  • Formatas: 256 pages
  • Išleidimo metai: 20-May-2019
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351456500

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems that would have applications in modular robotics and complex or large-scale systems such as the Mars Rover, the Mir station, and Space Shuttle Columbia. Unlike the hierarchical or centralized structure for gathering and processing data used by most existing algorithms, all information is processed locally in a fully decentralized system. The algorithms developed so far for decentralized data fusion, based on the linear information filter, obtain the same results as conventional centralized systems, but have limited scalability and are wasteful of communications and computational resources. Annotation c. by Book News, Inc., Portland, Or.

Decentralized Estimation and Control for
Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia.

Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted.

Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources.

Decentralized Estimation and Control for
Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation.
The text discusses:
  • Generalizing the linear Information filter to the problem of estimation for nonlinear systems
  • Developing a decentralized form of the algorithm
  • Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states
  • Reducing computational requirements by using smaller local model sizes
  • Defining internodal communication
  • Developing estimation algorithms for different models
  • Applying the decentralized algorithms to the problem of decentralized control
  • Demonstrating the theory to a modular wheeled mobile robot, a vehicle system with nonlinear kinematics and distributed means of acquiring information
  • Extending the applications to other robotic systems and large scale systems

    Decentralized Estimation and Control for
    Multisensor Systems addresses how decentralized estimation and control systems are rapidly becoming indispensable tools in a diverse range of applications - such as process control systems, aerospace, and mobile robotics - providing a self-contained, dynamic resource concerning electrical and mechanical engineering.
  • 1 Introduction
    1(18)
    1.1 Background
    1(2)
    1.2 Motivation
    3(9)
    1.2.1 Modular Robotics
    4(1)
    1.2.2 The Mars Sojourner Rover
    4(2)
    1.2.3 The MIT Humanoid Robot (Cog)
    6(1)
    1.2.4 Large Scale Systems
    7(1)
    1.2.5 The Russian Mir Space Station
    7(2)
    1.2.6 The Space Shuttle Columbia
    9(3)
    1.3 Problem Statement
    12(1)
    1.4 Approach
    13(1)
    1.4.1 Estimation
    13(1)
    1.4.2 Control
    13(1)
    1.4.3 Applications
    13(1)
    1.5 Principal Contributions
    14(1)
    1.6 Book Outline
    15(4)
    2 Estimation and Information Space
    19(36)
    2.1 Introduction
    19(1)
    2.2 The Kalman Filter
    19(3)
    2.2.1 System Description
    20(1)
    2.2.2 Kalman Filter Algorithm
    21(1)
    2.3 The Information Filter
    22(11)
    2.3.1 Information Space
    22(4)
    2.3.2 Information Filter Derivation
    26(2)
    2.3.3 Filter Characteristics
    28(1)
    2.3.4 An Example of Linear Estimation
    28(3)
    2.3.5 Comparison of the Kalman and Information Filters
    31(2)
    2.4 The Extended Kalman Filter (EKF)
    33(6)
    2.4.1 Nonlinear State Space
    34(1)
    2.4.2 EKF Derivation
    34(4)
    2.4.3 Summary of the EKF Algorithm
    38(1)
    2.5 The Extended Information Filter (EIF)
    39(5)
    2.5.1 Nonlinear Information Space
    39(1)
    2.5.2 EIF Derivation
    40(3)
    2.5.3 Summary of the EIF Algorithm
    43(1)
    2.5.4 Filter Characteristics
    43(1)
    2.6 Examples of Estimation in Nonlinear Systems
    44(9)
    2.6.1 Nonlinear State Evolution and Linear Observations
    44(2)
    2.6.2 Linear State Evolution with Nonlinear Observations
    46(2)
    2.6.3 Nonlinear State Evolution with Nonlinear Observations
    48(3)
    2.6.4 Comparison of the EKF and EIF
    51(2)
    2.7 Summary
    53(2)
    3 Decentralized Estimation for Multisensor Systems
    55(26)
    3.1 Introduction
    55(1)
    3.2 Multisensor Systems
    56(8)
    3.2.1 Sensor Classification and Selection
    56(3)
    3.2.2 Positions of Sensors in a Data Acquisition System
    59(1)
    3.2.3 The Advantages of Multisensor Systems
    60(1)
    3.2.4 Data Fusion Methods
    61(1)
    3.2.5 Fusion Architectures
    62(2)
    3.3 Decentralized Systems
    64(4)
    3.3.1 The Case for Decentralization
    64(2)
    3.3.2 Survey of Decentralized Systems
    66(2)
    3.4 Decentralized Estimators
    68(9)
    3.4.1 Decentralizing the Observer
    68(1)
    3.4.2 The Decentralized Information Filter (DIF)
    69(3)
    3.4.3 The Decentralized Kalman Filter (DKF)
    72(2)
    3.4.4 The Decentralized Extended Information Filter (DEIF)
    74(2)
    3.4.5 The Decentralized Extended Kalman Filter (DEKF)
    76(1)
    3.5 The Limitations of Fully Connected Decentralization
    77(2)
    3.6 Summary
    79(2)
    4 Scalable Decentralized Estimation
    81(40)
    4.1 Introduction
    81(2)
    4.1.1 Model Distribution
    82(1)
    4.1.2 Nodal Transformation Determination
    82(1)
    4.2 An Extended Example
    83(13)
    4.2.1 Unscaled Individual States
    83(3)
    4.2.2 Proportionally Dependent States
    86(2)
    4.2.3 Linear Combination of States
    88(5)
    4.2.4 Generalizing the Concept
    93(1)
    4.2.5 Choice of Transformation Matrices
    94(1)
    4.2.6 Distribution of Models
    94(2)
    4.3 The Moore-Penrose Generalized Inverse: T(+)
    96(5)
    4.3.1 Properties and Theorems of T(+)
    97(3)
    4.3.2 Computation of T(+)
    100(1)
    4.4 Generalized Internodal Transformation
    101(7)
    4.4.1 State Space Internodal Transformation: V(ji)(k)
    101(5)
    4.4.2 Information Space Internodal Transformation: T(ji)(k)
    106(2)
    4.5 Special Cases of T(ji)(k)
    108(4)
    4.5.1 Scaled Orthonormal T(i)(k) and T(j)(k)
    108(1)
    4.5.2 Diagonal I(+)(j)(z(j)(k))
    109(1)
    4.5.3 Nonsingular and Diagonal I(+)(j)(Z(j)(k))
    109(1)
    4.5.4 Row Orthonormal C(j)(k) and Nonsingular R(j)(k)
    110(1)
    4.5.5 Row Orthonormal T(i)(k) and T(j)(k)
    111(1)
    4.5.6 Reconstruction of Global Variables
    111(1)
    4.6 Distributed and Decentralized Filters
    112(7)
    4.6.1 The Distributed and Decentralized Kalman Filter (DDKF)
    112(2)
    4.6.2 The Distributed and Decentralized Information Filter (DDIF)
    114(2)
    4.6.3 The Distributed and Decentralized Extended Kalman Filter (DDEKF)
    116(1)
    4.6.4 The Distributed and Decentralized Extended Information Filter (DDEIF)
    117(2)
    4.7 Summary
    119(2)
    5 Scalable Decentralized Control
    121(20)
    5.1 Introduction
    121(1)
    5.2 Optimal Stochastic Control
    121(7)
    5.2.1 Stochastic Control Problem
    122(1)
    5.2.2 Optimal Stochastic Solution
    123(3)
    5.2.3 Nonlinear Stochastic Control
    126(1)
    5.2.4 Centralized Control
    127(1)
    5.3 Decentralized Multisensor Based Control
    128(7)
    5.3.1 Fully Connected Decentralized Control
    129(2)
    5.3.2 Distribution of Control Models
    131(1)
    5.3.3 Distributed and Decentralized Control
    132(2)
    5.3.4 System Characteristics
    134(1)
    5.4 Simulation Example
    135(5)
    5.4.1 Continuous Time Models
    135(2)
    5.4.2 Discrete Time Global Models
    137(1)
    5.4.3 Nodal Transformation Matrices
    138(1)
    5.4.4 Local Discrete Time Models
    139(1)
    5.5 Summary
    140(1)
    6 Multisensor Applications: A Wheeled Mobile Robot
    141(42)
    6.1 Introduction
    141(1)
    6.2 Wheeled Mobile Robot (WMR) Modeling
    142(7)
    6.2.1 Plane Motion Kinematics
    143(2)
    6.2.2 Decentralized Kinematics
    145(4)
    6.3 Decentralized WMR Control
    149(11)
    6.3.1 General WMR System Models
    150(2)
    6.3.2 Specific WMR Implementation Models
    152(6)
    6.3.3 Driven and Steered Unit (DSU) Control
    158(1)
    6.3.4 Application of Internodal Transformation
    159(1)
    6.4 Hardware Design and Construction
    160(7)
    6.4.1 WMR Modules
    161(2)
    6.4.2 A Complete Modular Vehicle
    163(2)
    6.4.3 Transputer Architecture
    165(2)
    6.5 Software Development
    167(7)
    6.5.1 Nodal Program (Communicating Control Process)
    168(5)
    6.5.2 Configuration Program (Decentralized Control)
    173(1)
    6.6 On-Vehicle Software
    174(7)
    6.6.1 Nodal Software
    174(2)
    6.6.2 Decentralized Motor Control
    176(1)
    6.6.3 WMR Trajectory Generation
    176(5)
    6.7 Summary
    181(2)
    7 Results and Performance Analysis
    183(26)
    7.1 Introduction
    183(1)
    7.2 System Performance Criteria
    183(3)
    7.2.1 Estimation Criteria
    184(1)
    7.2.2 Control Criteria
    185(1)
    7.3 Simulation Results
    186(3)
    7.3.1 Innovations
    186(1)
    7.3.2 State Estimates
    187(1)
    7.3.3 Information Estimates and Control
    188(1)
    7.4 WMR Experimental Results
    189(15)
    7.4.1 Trajectory Tracking
    190(2)
    7.4.2 Innovations and Estimated Control Errors
    192(12)
    7.5 Discussion of Results
    204(3)
    7.5.1 Local DSU Innovations
    204(2)
    7.5.2 Wheel Estimated Control Errors
    206(1)
    7.5.3 WMR Body Estimates
    206(1)
    7.6 Summary
    207(2)
    8 Conclusions and Future Research
    209(8)
    8.1 Introduction
    209(1)
    8.2 Summary of Contributions
    209(2)
    8.2.1 Decentralized Estimation
    210(1)
    8.2.2 Decentralized Control
    210(1)
    8.2.3 Applications
    210(1)
    8.3 Research Appraisal
    211(2)
    8.3.1 Decentralized Estimation
    211(2)
    8.3.2 Decentralized Control
    213(1)
    8.4 Future Research Directions
    213(4)
    8.4.1 Theory
    214(1)
    8.4.2 Applications
    215(2)
    Bibliography 217(10)
    Index 227
    Professor Arthur G.O. Mutambara- Arthur Mutambara is a robotics scientist, professor, and former Deputy Prime Minister of Zimbabwe. He is the Managing Director and CEO of the Africa Technology & Business Institute. Main research focus: wheeled mobile robots, decentralized communication in scalable flight formation, mechatronic design methodology, and modular robots.