|
|
1 | (18) |
|
|
1 | (2) |
|
|
3 | (9) |
|
|
4 | (1) |
|
1.2.2 The Mars Sojourner Rover |
|
|
4 | (2) |
|
1.2.3 The MIT Humanoid Robot (Cog) |
|
|
6 | (1) |
|
1.2.4 Large Scale Systems |
|
|
7 | (1) |
|
1.2.5 The Russian Mir Space Station |
|
|
7 | (2) |
|
1.2.6 The Space Shuttle Columbia |
|
|
9 | (3) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
1.5 Principal Contributions |
|
|
14 | (1) |
|
|
15 | (4) |
|
2 Estimation and Information Space |
|
|
19 | (36) |
|
|
19 | (1) |
|
|
19 | (3) |
|
|
20 | (1) |
|
2.2.2 Kalman Filter Algorithm |
|
|
21 | (1) |
|
2.3 The Information Filter |
|
|
22 | (11) |
|
|
22 | (4) |
|
2.3.2 Information Filter Derivation |
|
|
26 | (2) |
|
2.3.3 Filter Characteristics |
|
|
28 | (1) |
|
2.3.4 An Example of Linear Estimation |
|
|
28 | (3) |
|
2.3.5 Comparison of the Kalman and Information Filters |
|
|
31 | (2) |
|
2.4 The Extended Kalman Filter (EKF) |
|
|
33 | (6) |
|
2.4.1 Nonlinear State Space |
|
|
34 | (1) |
|
|
34 | (4) |
|
2.4.3 Summary of the EKF Algorithm |
|
|
38 | (1) |
|
2.5 The Extended Information Filter (EIF) |
|
|
39 | (5) |
|
2.5.1 Nonlinear Information Space |
|
|
39 | (1) |
|
|
40 | (3) |
|
2.5.3 Summary of the EIF Algorithm |
|
|
43 | (1) |
|
2.5.4 Filter Characteristics |
|
|
43 | (1) |
|
2.6 Examples of Estimation in Nonlinear Systems |
|
|
44 | (9) |
|
2.6.1 Nonlinear State Evolution and Linear Observations |
|
|
44 | (2) |
|
2.6.2 Linear State Evolution with Nonlinear Observations |
|
|
46 | (2) |
|
2.6.3 Nonlinear State Evolution with Nonlinear Observations |
|
|
48 | (3) |
|
2.6.4 Comparison of the EKF and EIF |
|
|
51 | (2) |
|
|
53 | (2) |
|
3 Decentralized Estimation for Multisensor Systems |
|
|
55 | (26) |
|
|
55 | (1) |
|
|
56 | (8) |
|
3.2.1 Sensor Classification and Selection |
|
|
56 | (3) |
|
3.2.2 Positions of Sensors in a Data Acquisition System |
|
|
59 | (1) |
|
3.2.3 The Advantages of Multisensor Systems |
|
|
60 | (1) |
|
3.2.4 Data Fusion Methods |
|
|
61 | (1) |
|
3.2.5 Fusion Architectures |
|
|
62 | (2) |
|
3.3 Decentralized Systems |
|
|
64 | (4) |
|
3.3.1 The Case for Decentralization |
|
|
64 | (2) |
|
3.3.2 Survey of Decentralized Systems |
|
|
66 | (2) |
|
3.4 Decentralized Estimators |
|
|
68 | (9) |
|
3.4.1 Decentralizing the Observer |
|
|
68 | (1) |
|
3.4.2 The Decentralized Information Filter (DIF) |
|
|
69 | (3) |
|
3.4.3 The Decentralized Kalman Filter (DKF) |
|
|
72 | (2) |
|
3.4.4 The Decentralized Extended Information Filter (DEIF) |
|
|
74 | (2) |
|
3.4.5 The Decentralized Extended Kalman Filter (DEKF) |
|
|
76 | (1) |
|
3.5 The Limitations of Fully Connected Decentralization |
|
|
77 | (2) |
|
|
79 | (2) |
|
4 Scalable Decentralized Estimation |
|
|
81 | (40) |
|
|
81 | (2) |
|
|
82 | (1) |
|
4.1.2 Nodal Transformation Determination |
|
|
82 | (1) |
|
|
83 | (13) |
|
4.2.1 Unscaled Individual States |
|
|
83 | (3) |
|
4.2.2 Proportionally Dependent States |
|
|
86 | (2) |
|
4.2.3 Linear Combination of States |
|
|
88 | (5) |
|
4.2.4 Generalizing the Concept |
|
|
93 | (1) |
|
4.2.5 Choice of Transformation Matrices |
|
|
94 | (1) |
|
4.2.6 Distribution of Models |
|
|
94 | (2) |
|
4.3 The Moore-Penrose Generalized Inverse: T(+) |
|
|
96 | (5) |
|
4.3.1 Properties and Theorems of T(+) |
|
|
97 | (3) |
|
4.3.2 Computation of T(+) |
|
|
100 | (1) |
|
4.4 Generalized Internodal Transformation |
|
|
101 | (7) |
|
4.4.1 State Space Internodal Transformation: V(ji)(k) |
|
|
101 | (5) |
|
4.4.2 Information Space Internodal Transformation: T(ji)(k) |
|
|
106 | (2) |
|
4.5 Special Cases of T(ji)(k) |
|
|
108 | (4) |
|
4.5.1 Scaled Orthonormal T(i)(k) and T(j)(k) |
|
|
108 | (1) |
|
4.5.2 Diagonal I(+)(j)(z(j)(k)) |
|
|
109 | (1) |
|
4.5.3 Nonsingular and Diagonal I(+)(j)(Z(j)(k)) |
|
|
109 | (1) |
|
4.5.4 Row Orthonormal C(j)(k) and Nonsingular R(j)(k) |
|
|
110 | (1) |
|
4.5.5 Row Orthonormal T(i)(k) and T(j)(k) |
|
|
111 | (1) |
|
4.5.6 Reconstruction of Global Variables |
|
|
111 | (1) |
|
4.6 Distributed and Decentralized Filters |
|
|
112 | (7) |
|
4.6.1 The Distributed and Decentralized Kalman Filter (DDKF) |
|
|
112 | (2) |
|
4.6.2 The Distributed and Decentralized Information Filter (DDIF) |
|
|
114 | (2) |
|
4.6.3 The Distributed and Decentralized Extended Kalman Filter (DDEKF) |
|
|
116 | (1) |
|
4.6.4 The Distributed and Decentralized Extended Information Filter (DDEIF) |
|
|
117 | (2) |
|
|
119 | (2) |
|
5 Scalable Decentralized Control |
|
|
121 | (20) |
|
|
121 | (1) |
|
5.2 Optimal Stochastic Control |
|
|
121 | (7) |
|
5.2.1 Stochastic Control Problem |
|
|
122 | (1) |
|
5.2.2 Optimal Stochastic Solution |
|
|
123 | (3) |
|
5.2.3 Nonlinear Stochastic Control |
|
|
126 | (1) |
|
5.2.4 Centralized Control |
|
|
127 | (1) |
|
5.3 Decentralized Multisensor Based Control |
|
|
128 | (7) |
|
5.3.1 Fully Connected Decentralized Control |
|
|
129 | (2) |
|
5.3.2 Distribution of Control Models |
|
|
131 | (1) |
|
5.3.3 Distributed and Decentralized Control |
|
|
132 | (2) |
|
5.3.4 System Characteristics |
|
|
134 | (1) |
|
|
135 | (5) |
|
5.4.1 Continuous Time Models |
|
|
135 | (2) |
|
5.4.2 Discrete Time Global Models |
|
|
137 | (1) |
|
5.4.3 Nodal Transformation Matrices |
|
|
138 | (1) |
|
5.4.4 Local Discrete Time Models |
|
|
139 | (1) |
|
|
140 | (1) |
|
6 Multisensor Applications: A Wheeled Mobile Robot |
|
|
141 | (42) |
|
|
141 | (1) |
|
6.2 Wheeled Mobile Robot (WMR) Modeling |
|
|
142 | (7) |
|
6.2.1 Plane Motion Kinematics |
|
|
143 | (2) |
|
6.2.2 Decentralized Kinematics |
|
|
145 | (4) |
|
6.3 Decentralized WMR Control |
|
|
149 | (11) |
|
6.3.1 General WMR System Models |
|
|
150 | (2) |
|
6.3.2 Specific WMR Implementation Models |
|
|
152 | (6) |
|
6.3.3 Driven and Steered Unit (DSU) Control |
|
|
158 | (1) |
|
6.3.4 Application of Internodal Transformation |
|
|
159 | (1) |
|
6.4 Hardware Design and Construction |
|
|
160 | (7) |
|
|
161 | (2) |
|
6.4.2 A Complete Modular Vehicle |
|
|
163 | (2) |
|
6.4.3 Transputer Architecture |
|
|
165 | (2) |
|
|
167 | (7) |
|
6.5.1 Nodal Program (Communicating Control Process) |
|
|
168 | (5) |
|
6.5.2 Configuration Program (Decentralized Control) |
|
|
173 | (1) |
|
|
174 | (7) |
|
|
174 | (2) |
|
6.6.2 Decentralized Motor Control |
|
|
176 | (1) |
|
6.6.3 WMR Trajectory Generation |
|
|
176 | (5) |
|
|
181 | (2) |
|
7 Results and Performance Analysis |
|
|
183 | (26) |
|
|
183 | (1) |
|
7.2 System Performance Criteria |
|
|
183 | (3) |
|
7.2.1 Estimation Criteria |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (3) |
|
|
186 | (1) |
|
|
187 | (1) |
|
7.3.3 Information Estimates and Control |
|
|
188 | (1) |
|
7.4 WMR Experimental Results |
|
|
189 | (15) |
|
7.4.1 Trajectory Tracking |
|
|
190 | (2) |
|
7.4.2 Innovations and Estimated Control Errors |
|
|
192 | (12) |
|
7.5 Discussion of Results |
|
|
204 | (3) |
|
7.5.1 Local DSU Innovations |
|
|
204 | (2) |
|
7.5.2 Wheel Estimated Control Errors |
|
|
206 | (1) |
|
|
206 | (1) |
|
|
207 | (2) |
|
8 Conclusions and Future Research |
|
|
209 | (8) |
|
|
209 | (1) |
|
8.2 Summary of Contributions |
|
|
209 | (2) |
|
8.2.1 Decentralized Estimation |
|
|
210 | (1) |
|
8.2.2 Decentralized Control |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (2) |
|
8.3.1 Decentralized Estimation |
|
|
211 | (2) |
|
8.3.2 Decentralized Control |
|
|
213 | (1) |
|
8.4 Future Research Directions |
|
|
213 | (4) |
|
|
214 | (1) |
|
|
215 | (2) |
Bibliography |
|
217 | (10) |
Index |
|
227 | |