|
|
1 | (10) |
|
1.1 Motivation for the Book |
|
|
1 | (1) |
|
1.2 A New Solution Technology |
|
|
2 | (2) |
|
|
4 | (4) |
|
|
8 | (3) |
|
|
11 | (12) |
|
|
11 | (1) |
|
2.2 Origins of Decision Diagrams |
|
|
12 | (3) |
|
2.3 Decision Diagrams in Optimization |
|
|
15 | (8) |
|
|
15 | (1) |
|
2.3.2 A Discrete Optimization Method |
|
|
16 | (1) |
|
2.3.3 Decision Diagrams in Constraint Programming |
|
|
17 | (1) |
|
2.3.4 Relaxed Decision Diagrams |
|
|
18 | (1) |
|
2.3.5 A General-Purpose Solver |
|
|
19 | (2) |
|
2.3.6 Markov Decision Processes |
|
|
21 | (2) |
|
3 Exact Decision Diagrams |
|
|
23 | (32) |
|
|
23 | (1) |
|
|
24 | (1) |
|
3.3 Basic Concepts of Decision Diagrams |
|
|
25 | (2) |
|
3.4 Compiling Exact Decision Diagrams |
|
|
27 | (5) |
|
3.4.1 Dynamic Programming |
|
|
28 | (2) |
|
3.4.2 Top-Down Compilation |
|
|
30 | (2) |
|
3.5 Maximum Independent Set Problem |
|
|
32 | (2) |
|
|
34 | (3) |
|
|
37 | (2) |
|
3.8 Single-Machine Makespan Minimization |
|
|
39 | (3) |
|
|
42 | (2) |
|
3.10 Maximum 2-Satisfiability Problem |
|
|
44 | (2) |
|
3.11 Compiling Decision Diagrams by Separation |
|
|
46 | (4) |
|
3.12 Correctness of the DP Formulations |
|
|
50 | (5) |
|
4 Relaxed Decision Diagrams |
|
|
55 | (28) |
|
|
55 | (2) |
|
4.2 Top-Down Compilation of Relaxed DDs |
|
|
57 | (2) |
|
4.3 Maximum Independent Set |
|
|
59 | (1) |
|
|
60 | (3) |
|
4.5 Maximum 2-Satisfiability Problem |
|
|
63 | (1) |
|
|
64 | (10) |
|
|
64 | (1) |
|
4.6.2 Variable Ordering Heuristic |
|
|
65 | (1) |
|
4.6.3 Bounds vs. Maximum BDD Width |
|
|
66 | (1) |
|
4.6.4 Comparison with LP Relaxation |
|
|
67 | (7) |
|
4.7 Compiling Relaxed Diagrams by Separation |
|
|
74 | (9) |
|
4.7.1 Single-Machine Makespan Minimization |
|
|
76 | (7) |
|
5 Restricted Decision Diagrams |
|
|
83 | (12) |
|
|
83 | (2) |
|
5.2 Top-Down Compilation of Restricted DDs |
|
|
85 | (1) |
|
|
86 | (9) |
|
|
87 | (2) |
|
5.3.2 Solution Quality and Maximum BDD Width |
|
|
89 | (1) |
|
|
90 | (2) |
|
|
92 | (3) |
|
6 Branch-and-Bound Based on Decision Diagrams |
|
|
95 | (28) |
|
|
95 | (1) |
|
6.2 Sequential Branch-and-Bound |
|
|
96 | (1) |
|
|
97 | (1) |
|
6.4 Enumeration of Subproblems |
|
|
98 | (2) |
|
6.4.1 Exact Cutset Selection |
|
|
100 | (1) |
|
|
100 | (9) |
|
6.5.1 Results for the MISP |
|
|
101 | (3) |
|
6.5.2 Results for the MCP |
|
|
104 | (4) |
|
6.5.3 Results for MAX-2SAT |
|
|
108 | (1) |
|
6.6 Parallel Branch-and-Bound |
|
|
109 | (14) |
|
6.6.1 A Centralized Parallelization Scheme |
|
|
112 | (1) |
|
6.6.2 The Challenge of Effective Parallelization |
|
|
113 | (1) |
|
6.6.3 Global and Local Pools |
|
|
113 | (1) |
|
|
114 | (2) |
|
6.6.5 DDX10: Implementing Parallelization Using X10 |
|
|
116 | (1) |
|
6.6.6 Computational Study |
|
|
116 | (7) |
|
|
123 | (14) |
|
|
123 | (2) |
|
|
125 | (5) |
|
7.3 Relaxed BDD Orderings |
|
|
130 | (1) |
|
|
131 | (6) |
|
7.4.1 Exact BDDs for Trees |
|
|
132 | (1) |
|
7.4.2 Exact BDD Width Versus Relaxation BDD Bound |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
137 | (20) |
|
|
137 | (2) |
|
8.2 General Form of a Recursive Model |
|
|
139 | (2) |
|
|
141 | (5) |
|
8.3.1 Single-Machine Scheduling |
|
|
141 | (1) |
|
8.3.2 Sequence-Dependent Setup Times |
|
|
142 | (2) |
|
|
144 | (2) |
|
8.4 State-Dependent Costs |
|
|
146 | (7) |
|
8.4.1 Canonical Arc Costs |
|
|
147 | (4) |
|
8.4.2 Example: Inventory Management |
|
|
151 | (2) |
|
8.5 Nonserial Recursive Modeling |
|
|
153 | (4) |
|
9 MDD-Based Constraint Programming |
|
|
157 | (26) |
|
|
157 | (1) |
|
9.2 Constraint Programming Preliminaries |
|
|
158 | (6) |
|
9.3 MDD-Based Constraint Programming |
|
|
164 | (9) |
|
|
166 | (1) |
|
|
167 | (2) |
|
9.3.3 MDD Propagation by Intersection |
|
|
169 | (4) |
|
9.4 Specialized Propagators |
|
|
173 | (5) |
|
9.4.1 Equality and Not-Equal Constraints |
|
|
173 | (1) |
|
9.4.2 Linear Inequalities |
|
|
174 | (1) |
|
9.4.3 Two-Sided Inequality Constraints |
|
|
174 | (1) |
|
9.4.4 Alldifferent Constraint |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
9.4.7 Using Conventional Domain Propagators |
|
|
178 | (1) |
|
|
178 | (5) |
|
10 MDD Propagation for Sequence Constraints |
|
|
183 | (22) |
|
|
183 | (3) |
|
10.2 MDD Consistency for Sequence Is NP-Hard |
|
|
186 | (3) |
|
10.3 MDD Consistency for Sequence Is Fixed Parameter Tractable |
|
|
189 | (1) |
|
10.4 Partial MDD Filtering for Sequence |
|
|
190 | (6) |
|
10.4.1 Cumulative Sums Encoding |
|
|
191 | (1) |
|
10.4.2 Processing the Constraints |
|
|
192 | (2) |
|
|
194 | (2) |
|
10.5 Computational Results |
|
|
196 | (9) |
|
10.5.1 Systems of Sequence Constraints |
|
|
198 | (3) |
|
10.5.2 Nurse Rostering Instances |
|
|
201 | (2) |
|
10.5.3 Comparing MDD Filtering for Sequence and Among |
|
|
203 | (2) |
|
11 Sequencing and Single-Machine Scheduling |
|
|
205 | (30) |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
208 | (3) |
|
|
211 | (3) |
|
|
214 | (4) |
|
11.5.1 Filtering Invalid Permutations |
|
|
214 | (1) |
|
11.5.2 Filtering Precedence Constraints |
|
|
215 | (1) |
|
11.5.3 Filtering Time Window Constraints |
|
|
215 | (1) |
|
11.5.4 Filtering Objective Function Bounds |
|
|
216 | (2) |
|
11.6 Inferring Precedence Relations from Relaxed MDDs |
|
|
218 | (1) |
|
|
219 | (2) |
|
11.8 Encoding Size for Structured Precedence Relations |
|
|
221 | (1) |
|
11.9 Application to Constraint-Based Scheduling |
|
|
222 | (13) |
|
11.9.1 Experimental Setup |
|
|
223 | (1) |
|
11.9.2 Impact of the MDD Parameters |
|
|
224 | (3) |
|
11.9.3 Traveling Salesman Problem with Time Windows |
|
|
227 | (1) |
|
11.9.4 Asymmetric Traveling Salesman Problem with Precedence Constraints |
|
|
228 | (2) |
|
|
230 | (3) |
|
|
233 | (2) |
References |
|
235 | (14) |
Index |
|
249 | |